• Title/Summary/Keyword: Flow Over Cylinder

Search Result 160, Processing Time 0.024 seconds

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(3) - Velocity Profile(1) (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(3) - 유속분포(1))

  • Park, Chanjun;Sung, Jaeyong;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.169-182
    • /
    • 2016
  • This paper is the third investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous works, several assumptions used in the steady flow bench were examined and the flow characteristics were estimated both by the conventional impulse swirl meter and a particle image velocimetry at 1.75B position. From these works, it was concluded that the assumption of the solid rotation might cause serious problems and both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75B plane. Therefore, the understanding of the detail velocity profiles is very important to keep discussing the issues about the steady flow evaluation method. For this purpose, the planar velocity profiles were measure at 1.75B position by particle image velocimetry and the characteristics were examined according to the valve angles and lifts. The results show that the planar velocity profiles of 11, 16, $21^{\circ}$ valve angle heads according to the lift are similar to each other, however, that of $26^{\circ}$ angle is an exceptional case in the all aspects. In addition, the swirl behaviors are not apparent up to 6~8 mm lift under the $21^{\circ}$ angle and somewhat arranged motions are observed over the whole plane near the highest lift. At this point, the narrower the angle, the lower the lift at which the swirl motions become clear. On the other hands, when the angle is $26^{\circ}$, the center of swirl is always farthest from the cylinder center and only the indistinct swirl is observed even if at the highest lift. Also, all the swirl centers are quite apart from the cylinder center so that the effect of eccentricity may not be negligible at 1.75B regardless the valve angle. Related to the tangential velocity along with the radial direction, the bands of the velocity distribution are very wide and the mean velocities of cylinder center basis are lower than the velocity which is assumed in the ISM evaluation. Lastly, the mean tangential velocity profiles of swirl center basis are sometimes higher than that of ISM-assumed up to 0.6 non-dimensional distance less than 6mm lift, however, as the lift increases the profiles are different according to the angles and profile $11^{\circ}$ is the most closed to the ideal profile. Consequently, the real velocity profile is far from the assumption of ISM evaluation.

Development of Zonal-Embedded-Grid Method for a Polar Coordinate System and Application to the Spin-up Flow within a Semi-Circular Cylinder

  • SUH Yong Kweon;YEO Chang-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.81-90
    • /
    • 2004
  • A zonal embedded grid technique has been developed for computation of the two-dimensional Navier-Stokes equations with cylindrical coordinates. The fundamental idea of the zonal embedded grid technique is that the number of azimuthal grids can be made small near the origin of the coordinates so that the grid size is more uniformly distributed over the domain than with the conventional regular-grid system. The code developed using this technique combined with the explicit, finite-volume method was then applied to calculation of the spin-up flows within a semi-circular cylinder. It was shown that the numerical results were in good agreement with the experimental results both qualitatively and quantitatively.

  • PDF

APPLICATION OF AN IMMERSED BOUNDARY METHOD FOR THREE-DIMENSIONAL FLOQUET STABILITY ANALYSIS (3차원 Floquet 안정성 분석을 위한 가상 경계법의 적용)

  • Yoon, D.H.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.41-47
    • /
    • 2009
  • An immersed boundary method(IBM, Kim et al.(2001)) for simulating flows over complex geometries is applied to computation of three-dimensional Floquet stability of a periodic wake. Floquet stability analysis is employed to extract different modes of three-dimensional instability. To verify the present method, a fully-resolved Floquet stability calculation for flow past a circular cylinder is considered. There are two different instability modes with long(mode A) and short (mode B) spanwise wavelengths for the periodic wake of a circular cylinder. The critical Reynolds number and the most unstable spanwise wavelengths of modes A and B are computed using the present method, and compared with other authors' results currently available.

Studies on The Flow Properties of Semi-Solid Dosage Forms (II) : Temperature-Dependent Flow Behavior of Vaseline (반고형제제의 유동특성에 관한 연구 (제2보) : 바셀린의 온도의존성 유동거동)

  • Kim, Jeong-Hwa;Song, Ki-Won;Jang, Gap-Shik;Lee, Jang-Oo;Lee, Chi-Ho
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.38-47
    • /
    • 1997
  • Using a concentric cylinder type, rheometer. the steady shear flow properties of vaseline were measured over the temperature range of 20~70${\circ}$C. In this paper, the shea rate and temperature dependencies of its flow behavior were investigated and the validity of some flow models was examined. In addition, the flow characteristics over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main findings obtained from this study can be summarized as follows: (1) At relatively lower temperature range, vaseline is a plastic fluid with a yield stress and its flow behavior shows shear-thinning characteristics. (2) As the temperature increases, the value of a yield stress and the degree of shear-thinning become smaller, consequently, the Newtonian flow behavior occurs at a lower shear rate range. (3) At temperature range lower than 45${\circ}$C, the flow behavior shows much stronger temperature dependence, and a larger activation energy is needed for flow. (4) The Herschel-Bulkley model is the most effective one g$^3$ to predict the flow behavior of vaseline having a yield stress. The validity of the Bingham and Casson models becomes more available with increasing temperature. The flow behavior of vaseline at temperature range higher than 45${\circ}$C can be perfectly described by the Newton model.

  • PDF

A Theoretical and Experimental Study on the Prediction of Volumetric Efficiency for 4-Cylinder Diesel Engine (4기통 디젤기관의 체적효율 예측에 관한 수치해석 및 실험적 연구)

  • 이재순;윤건식;심현수;박상기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1928-1939
    • /
    • 1992
  • In this study, a computer program has been developed which predicts the variation of the volumetric efficiency with the change of design of the intake system effectively by the analysis of the flow in each part of a multi-cylinder compression ignition engine. For the calculation of the flow in the intake and exhaust systems, the method of characteristics has been used, and the double Wiebe's function has been adopted for the calculation of the heat release rate in the cylinders. The accuracy of presented method has been proved through the comparison between the simulation and experimental results over the various engine speeds and intake pipe lengths.

Studies on the Flow Properties of Semi-Solid Dosage Forms (I) : Steady Shear Flow Behavior of Toothpastes (반고형제제의 유동특성에 관한 연구 (제1보) : 치약의 정상전단 유동거동)

  • Kim, Jeong-Hwa;Song, Ki-Won;Lee, Jang-Oo;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.213-221
    • /
    • 1995
  • The steady shear flow properties of six kinds of commercial toothpastes were measured using a concentric cylinder type rheometer. In this paper, the shear rate and temperature dependencies of their flow behavior were investigated and the validity of the Casson and Herschel-Bulkley models was examined. Further, the flow properties over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) Toothpastes are plastic fluids with a yield stress and their flow behavior shows shear-thinning characteristics. (2) With increasing temperature, the degree of shear-thinning becomes weaker and the Newtonian flow behavior occurs at a lower shear rate range. (3) The Herschel-Bulkley model is more effective than the Casson model in predicting their flow behavior. (4) As the temperature increases, the yield stress, plastic viscosity and consistency index become smaller, on the contrary, the flow behavior index becomes larger.

  • PDF

Numerical Simulation of the Flow Patterns with Sloping Forest Canopies (경사진 산림지형에서의 자연유동에 대한 수치해석)

  • Yoon, Hyun-Gi;Stock, David E.;Yoo, Ki-Soo;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.173-180
    • /
    • 2008
  • Diurnal variation of the flow over a forest canopy on a mountain slope is simulated numerically. In the daytime, the earth surface is heated by the solar radiation and the flow goes up the mountain due to the buoyancy force, and during the night, the air is drained downward along the slope owing to the cooling of the surface by radiation. In this flow process the forest canopy that consists of leaf region and the trunk region plays a dominant role as a momentum sink to the flow, thus the modeling of the leaf area region and trunk region is critical to the successful flow simulation. In the present study, a field measurement in an experimental forest in the State of Oregon in the United States is numerically analyzed. The resistance to the flow in the leaf region is directly related to the leaf area density (LAD), and the trunk is modeled as a cylinder.

Investigation of the Conjugate Heat Transfer and Wall Thermal Boundary Conditions (복합열전달과 열경계조건에 관한 연구)

  • Chang, Byong Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.33-42
    • /
    • 1999
  • The effects of wan thermal boundary condition were investigated for a uniform wall temperature, a uniform wall heat flux, and for coupled heat conduction In the channel wall with transverse rectangular ribs. Numerical investigations for steady laminar flow show behavior similar to that observed experimentally in the separated flow region for flow over a cylinder. Conjugate heat transfer with a low solid-fluid thermal conductivity ratio does not lead to the same results as for the uniform heat flux boundary condition, and heat transfer reversal is found on the back sides of the ribs.

Asymmetric Vortices around a Body at High Angle of Attack Subsonic Flow (아음속 유동하의 고 받음각 물체 주위의 비대칭 와류 특성 연구)

  • Park, Mee-Young;Kim, Wan-Sub;Lee, Jae-Woo;Park, Soo-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.33-38
    • /
    • 2008
  • Numerical investigation of asymmetric vortices at high angles of attack subsonic flow is performed using three-dimensional Navier-Stokes equations. A small bump has been carefully selected and attached near the nose of an ogive cylinder to simulate symmetric vortices. Selected bump shape does develop asymmetric vortices and is verified using Lamont's experimental results. By changing the angle of attack, Reynolds numbers, and Mach numbers, the characteristics of asymmetric vortices are observed. The angle of attack which contributes significantly to the generation of asymmetric vortices are over 30 degrees. By increasing Mach number and Reynolds number asymmetric vortices, hence the side forces show decreasing trend..

  • PDF

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulation (I) - Numerical Test - (LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (I) - 수치 실험 -)

  • Park, No-Ma;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.973-983
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes is evaluated for large eddy simulation of turbulent flow. Two turbulent flows are considered: turbulent channel flow at Re = 23000 and flow over a circular cylinder at Re = 3900. The effects of numerical dissipation on the finite differencing and aliasing errors and the subgrid-scale stress are investigated. It is shown through the simulations that compact upwind schemes are not suitable for LES, whereas the fourth order-compact centered scheme is a good candidate for LES provided that proper dealiasing of nonlinear terms is performed. The classical issue on the aliasing error and the treatment of nonlinear terms is revisited with compact difference schemes.