Journal of the Korea Society of Computer and Information
/
v.25
no.8
/
pp.111-117
/
2020
Recently, with the high interest of machine learning, the need for educational controllers to interface with physical devices has increased. However, existing controllers are limited in terms of high cost and area of utilization for educational purposes. In this paper, motion control controllers using brain waves are proposed for the purpose of students' machine learning applications. The brain motion that occurs when imagining a specific action is measured and sampled, then the sample values were learned through Tensor Flow and the motion was recognized in contents such as games. Movement variation for motion recognition consists of directionality and jump motion. The identification of the recognition behavior is sent to a game produced by an Unreal Engine to operate the character in the game. In addition to brain waves, the implemented controller can be used in various fields depending on the input signal and can be used for educational purposes such as machine learning applications.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.11
/
pp.1615-1622
/
2022
In order to overcome the limitations of the instructor-centered lecture-style teaching method, recently, flipped learning, a learner-centered teaching method, has been widely introduced. However, despite the many advantages of flipped learning, there is a problem that students cannot solve questions that arise during prior learning in real time. Therefore, in order to solve this problem, we developed DBbot, an assistant chatbot for database design course managed in the flipped learning method. The DBBot is composed of a chatbot app for learners and a chatbot management app for instructors. Also, it's implemented so that questions that instructors can anticipate in advance, such as questions related to class operation and every semester repeated questions related to learning content, can be answered using Google's DialogFlow. It's implemented so that questions that the instructor cannot predict in advance, such as questions related to team projects, can be answered using the question/answer DB and the BM25 algorithm, which is a similarity comparison algorithm.
The Journal of Korean Academic Society of Nursing Education
/
v.30
no.3
/
pp.290-300
/
2024
Purpose: Nursing clinical practice education is transforming with the advent of mobile education and the unique experiences it offers in caring for virtual patients. For this innovative approach, this study aims to evaluate the efficacy of mobile-based virtual women's breast cancer nursing simulation training content on nursing students' confidence, satisfaction, and learning flow. It also examines the nursing students' virtual patient care experiences. Methods: A mixed methods approach using a convergent design was employed to examine students' cancer care confidence and satisfaction, learning flow, and learning experiences. Quantitative data through online questionnaires and qualitative data through focus group interviews were collected, merged, and analyzed. Results: This study developed a virtual nursing training module aimed at caring for women with breast cancer, a novel approach to facilitate mobile-based simulation training for nursing students. Data were analyzed using descriptive analysis, a chi-squared test, Fisher's exact test, t-test for participant homogeneity (experimental: 20, control: 20), independent t-test, and paired t-test. Satisfaction (t=3.53, p=.001) and confidence (t=4.07, p=.001), as well as flow (t=3.78, p=.001), significantly improved in the experimental group compared to the control group. Two core themes and five sub-themes were derived from the experimental group's experiences acquired by caring for women with breast cancer virtually, including that the students "Virtually cared for breast cancer patients, learning as if real." Conclusion: The mobile-based virtual nursing simulation training content allowed nursing students to upgrade their comprehensive nursing care skills by experiencing a fun and practical environment made possible by a new learning method.
Journal of the Korea Society of Computer and Information
/
v.29
no.10
/
pp.129-135
/
2024
In this paper, we design and implement a worker musculoskeletal assessment platform. The three core components of this platform are the Mobile App, the Modeling Server, and the Web Platform. The Mobile App is an Android application developed in Kotlin, targeting Android platform 12 (S) and Android API Level 31 devices. The app utilizes the camera to capture various worker motion data and transmits it to the Modeling Server. The Modeling Server is implemented using Node.js. This server converts the worker's motion data-such as points, skeleton, and x, y, z coordinate data, measured by the mobile app-into multidimensional arrays. It then applies machine learning frameworks like TensorFlow and Keras to predict the worker's posture. The worker posture learning model is built using Teachable Machine. The Web Platform is developed using React and visualizes the worker's movements as 3D animations along a timeline. The machine learning-based worker musculoskeletal assessment platform developed in this paper aims to contribute to minimizing musculoskeletal disorders in workers at industrial sites.
This study empirically investigated the relationships among inter-organizational cost management (IOCM), cooperation with suppliers, information exchange between partners, inter-organizational learning, control integration, and the supply-chain performance of a firm. The results showed that the adoption of IOCM positively affects the collaboration between buyers and suppliers, which also leads to the increased information flow between them. According to the results of this study, it was found that inter-organizational information flow causes inter-organizational learning, and this learning contributes to the improved supply-chain performance. In this study, the positive effects of the cooperation with suppliers through IOCM on the control integration in supply-chains were not empirically confirmed. However, the impact of IOCM on control integration was significant and positive. Finally, the fact that the enhanced control integration can improve the supply-chain performance of a firm was empirically demonstrated.
Aydogmus, Hacer Yumurtaci;Erdal, Halil Ibrahim;Karakurt, Onur;Namli, Ersin;Turkan, Yusuf S.;Erdal, Hamit
Computers and Concrete
/
v.16
no.5
/
pp.741-757
/
2015
In the last decade, several modeling approaches have been proposed and applied to estimate the high-performance concrete (HPC) slump flow. While HPC is a highly complex material, modeling its behavior is a very difficult issue. Thus, the selection and application of proper modeling methods remain therefore a crucial task. Like many other applications, HPC slump flow prediction suffers from noise which negatively affects the prediction accuracy and increases the variance. In the recent years, ensemble learning methods have introduced to optimize the prediction accuracy and reduce the prediction error. This study investigates the potential usage of bagging (Bag), which is among the most popular ensemble learning methods, in building ensemble models. Four well-known artificial intelligence models (i.e., classification and regression trees CART, support vector machines SVM, multilayer perceptron MLP and radial basis function neural networks RBF) are deployed as base learner. As a result of this study, bagging ensemble models (i.e., Bag-SVM, Bag-RT, Bag-MLP and Bag-RBF) are found superior to their base learners (i.e., SVM, CART, MLP and RBF) and bagging could noticeable optimize prediction accuracy and reduce the prediction error of proposed predictive models.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.441-444
/
2016
Peace on the Korean Peninsula is threatened by physical aggressions and cyber terrors such as nuclear tests, missile launchings, senior government officials' smart phone hackings and DDos attacks to banking systems. Cyber attacks such as vulnerability for the hackings, malware distributions are generally defended by passive defense through the detecting signs of first invasion and attack, data analysis, adding library and updating vaccine programs. In this paper the concept of security program based on Google TensorFlow machine learning ability to perform adding libraries and solving security vulnerabilities by itself is researched and proposed.
Purpose: We aimed to investigate the objective cutoff values of unstimulated flow rates (UFR) and stimulated salivary flow rates (SFR) in patients with xerostomia and to present an optimal machine learning model with a classification and regression tree (CART) for all ages. Materials and Methods: A total of 829 patients with oral diseases were enrolled (591 females; mean age, 59.29±16.40 years; 8~95 years old), 199 patients with xerostomia and 630 patients without xerostomia. Salivary and clinical characteristics were collected and analyzed. Result: Patients with xerostomia had significantly lower levels of UFR (0.29±0.22 vs. 0.41±0.24 ml/min) and SFR (1.12±0.55 vs. 1.39±0.94 ml/min) (P<0.001), respectively, compared to those with non-xerostomia. The presence of xerostomia had a significantly negative correlation with UFR (r=-0.603, P=0.002) and SFR (r=-0.301, P=0.017). In the diagnosis of xerostomia based on the CART algorithm, the presence of stomatitis, candidiasis, halitosis, psychiatric disorder, and hyperlipidemia were significant predictors for xerostomia, and the cutoff ranges for xerostomia for UFR and SFR were 0.03~0.18 ml/min and 0.85~1.6 ml/min, respectively. Conclusion: Xerostomia was correlated with decreases in UFR and SFR, and their cutoff values varied depending on the patient's underlying oral and systemic conditions.
Purpose: This study aimed to verify whether blended learning is worth alternating with traditional face-to-face learning for some dental technology students in practice teaching. Methods: A total of 68 students were included in this study. They were divided into two groups to compare blended learning and traditional face-to-face learning. The experiment had been carried out over 15 weeks. The following tests were performed: test of instructional quality, test of learning satisfaction, test of perceived usefulness, and test of learning flow. The IBM SPSS software was used to analyze the data. Results: The learning satisfaction and the perceived useful of blended learning by students appeared to be higher than that of traditional face-to-face learning. However, there was no significant difference in the variables of traditional face-to-face learning and those of blended learning (p<0.05). Conclusion: Blended learning is an alternative to traditional face-to-face learning for some dental technology students in practice teaching.
This paper provides the emerging flow of new communication technology using ubiquitous learning (u-Learning). In the intelligent Ubiquitous environment, humans and devices with computing abilities become interoperable. u-Learning will lead students to open their minds to the world and motivate self-learning, which may lead them to learn and communicate more efficiently, and save time, cost and energy. Through case research, regarding education, learning attitude, custom and, personal relations, one must solve the fundamental issues of misuse and outflow problems regarding personal information that will be widely collected in detail than the present condition, and in order for this not to happen, further support of the law and system, plus ethical perspectives must be considered in order to progress.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.