• Title/Summary/Keyword: Flow Cone Flow

Search Result 288, Processing Time 0.025 seconds

On the viscosity of Bunker C fuel oil (방카 C 중유의 점도에 관한 실험)

  • 나윤호
    • Journal of the Korean Professional Engineers Association
    • /
    • v.4 no.15
    • /
    • pp.11-15
    • /
    • 1971
  • Bunker C fuel oil may be taken as a conc. solution of asphalt as a solute. It may be assumpt that there will be unalogical relationship between cone. solution and solute in regological behavior. Investigation was carried out to fiud out the -opitimum preheating temperature. The following results were obtained: the colloidal structure bunker C fuel oil undergoes a transition at around the softening point of the solute asphalt: and the flow charactor changes from non-Newtonian flow to Newtonian as well as its activation energy is memarkably reduced at around softening point of the solute asphalt for the purpose of the improvement of flow charater of Bunker C fuel oil, the preheating must be done above the softening point of a solute asphalt.

  • PDF

Influence of Various Chemical Admixtures on Rheological Properties of Cement Paste (혼화제가 시멘트 페이스트의 레오로지 성상에 미치는 영향)

  • Heo Young Sun;Kim Jong;Shin Jae Kyung;Yoon Seob;Lee Gun Cheol;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.675-678
    • /
    • 2005
  • Cement paste is originally the basic material and crucial factor consisting concrete. This study investigates the relationship between flow apparatuses, which are ring flow, flow cone and mini slump, in order to estimate the fluidity of cement paste. For quantitatively evaluating the measured data, this study also analyses the calibration of the rheology consistents of cement paste using viscometer. For this purpose, the present work discusses the influence of the differences of companies and ingredients, affecting the fluidity of cement paste

  • PDF

Effect of Dune Sand on the Properties of Flowing Sand-Concrete (FSC)

  • Bouziani, Tayeb;Bederina, Madani;Hadjoudja, Mourad
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Sand-concrete is being researched for potential usage in construction in Saharan regions of Algeria, because of shortage in coarse aggregate resources. This research work deals with the effect of dune sand, available in huge quantities in these regions, on the properties of flowing sand-concrete (FSC) prepared with different proportions of dune and river sands. Mini-cone slump test, v-funnel flow-time test and viscosity measurements were used to characterize the behaviour of FSC in fresh state. The 28-day compressive strength was also determined. Test results show that an optimal content of dune sand, which makes satisfied fresh and hardened properties of FSC, is obtained. Moreover, the obtained flow index (constant b) calculated by the help of power-law viscosity model is successfully correlated to the experimental results of v-funnel flow time.

Effects of Backhole on Hyraulics of Liquid Rocket Swirl Coaxial Injector (액체로켓 동축형 스월인젝터에서 Backhole에 의한 수력학적 영향)

  • Hwang Seong-Ha;Seol Jaehoon;Jeong Wonho;Han Poongkyu;Yoon Youngbin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.287-290
    • /
    • 2002
  • 'Backhole' is an extra empty volume where is located behind the tangential entries at the rear par of the vortex chamber in the swirl coaxial injector. With the backhole, there are three major hydraulic characteristics. First, mass flow rate is increased about $15{\%}$ compared with the case without the backhole. Second, with the backhole, the center region of the injected flow has more large volume than that of without the backhole. The last, some range of the cone angle can be controlled by the backhole Experiments are conducted by using a PDPA apparatus, a mechanical patternator, stroboscopic photography and etc. With the backhole, based on cold-flow tests, the model swirl injector has some Improvement in its performance.

  • PDF

Aerodynamic Analysis and Design of Inline-Duct Fan (관류익형송풍기의 공력해석 및 설계)

  • Guo En-Min;Kim Kwang-Yong;Seo Seoung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.639-642
    • /
    • 2002
  • A tubular centrifugal fin is designed by using various methods of analysis and design. A preliminary design method based on empirical optimum curves for centrifugal fin is used to determine the geometric parameters for tubular centrifugal fan. And, Quasi-3D streamline curvature duct-flow analysis is used to provide the primary position of streamlines and spanwise distribution of flow angle f3r generation of blade geometry based on S1 surface. Three-dimensional CFD solution then is obtained to optimize the blade design. Constriction of flow path in the region of impeller, backward swept blade, and central cone, which are introduced to improve the design, successfully remove or suppress the vortices downstream of the impeller.

  • PDF

발전소 배관지지용 유압완충기 개발

  • Park, Tae-Jo;Koo, Chil-Hyo;Cho, Gwang-Hwan;Lee, Dong-Ryul;Lee, Hyun;Kim, Yeon-Hwan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.232-238
    • /
    • 1997
  • In this paper, a theoretical method is presented to design a hydraulic control valve system that consist of an important component in the hydraulic snubber. The hydraulic snubber is used essentially to support the piping systems at power plants. To calculate the force due to pressure drop and flow rate in the valve orifice and by-pass hole, Bernoulli equation is used. The Reynolds equation are numerically analyzed in the clearance gap between the valve cone and valve seat to estimate the friction force and leakage flow rate. Based on the detailed theoretical data, we developed successfully the hydraulic snubber for power plants.

  • PDF

The Numerical multi-phase analysis of ventilating flow around vehicle (환기 공동을 이용한 수중운동체 주위의 초월 공동 다상유동장 해석)

  • Park, Wam-Gyu;Kim, Dong-Hyun;Jung, Chul-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.252-255
    • /
    • 2011
  • Supercavitating torpedo uses the supercavitation technology that can reduce dramatically the skin friction drag. The present work focuses on the numerical analysis of the non-condensable cavitating flow around the supercavitating torpedo. The governing equations are the Navier-Stokes equations based on the homogeneous mixture model. The cavitation model uses a new cavitation model which was developed by Merkle(2006). The multiphase flow solver uses an implicit preconditioning scheme in curvilinear coordinates. The ventilated cavitation is implemented by non-condensable gas injection on backward of cavitator cone and the base of the torpedo. The comparison between the without and with ventilated cavitation numerical results, with ventilated cavitation using non-condensable gas injection is more efficient method.

  • PDF

Elastically-influenced instabilities in Taylor-Couette and other flows with curved streamlines: a review

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.117-125
    • /
    • 2008
  • Viscoelastic instabilities are of fundamental importance to understanding the physics of complex fluids and of practical importance to materials processing and fluid characterization. Significant progress has been made over the past 15 years in understanding instabilities in viscoelastic flows with curved streamlines and is reviewed here. Taylor-Couette flow, torsional flow between a cone and plate, and torsional flow between parallel plates have received special attention due to both the basic significance of these flows and their critical role in rheometry. First, we review the criteria for determining when these flows become unstable due to elasticity in the absence of inertia, and discuss the generalization of these criteria to more complex flows with curved streamlines. Then, focusing on experiments and simulations in the Taylor-Couette problem, we review how thermal sensitivity (i.e., the dependence of fluid viscosity and elasticity on temperature) and inertia affect the stability of viscoelastic flows. Finally, we conclude with some general thoughts on unresolved issues and remaining challenges related to viscoelastic instabilities.

Numerical Study of Cyclone Dust Collector (싸이클론 집진기의 수치해석적 연구)

  • 전영남;엄태인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • Numerical simulation was performed for the 3-dimensional flow filed of gas and particle phase for cyclone dust collector. FVM(Finite Volume Method) was employed for gas phase. The flow was solved suing the k-.varepsilon. epsilon turbulence model. The particle exit at the bottom of the cone was treated as a solid wall in this model because the gas flow through the effective dust exit is usually insignificant. The major parameters considered in this study was vortex finder diameter, effective dust exit diameterm vortex finder length, inlet type for dimension performance. Particle trajectory calculations were made for three different, particle sizes of 1, 25 and 50 .mu.m. The results obtained from this study give some physical insight of dust particle collection mechanism together with the indication of the collection efficiency. The simulation results were in generally good agreement with empirical knowledge. The application of this kind of computer program looks promising as a potential tool for the design of cyclone and determination of optimum operating condition.

  • PDF

Calibration of flush air data sensing systems for a satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • This paper presents calibration of flush air data sensing systems during ascent period of a satellite launch vehicle. Aerodynamic results are numerically computed by solving three-dimensional time dependent compressible Euler equations over a payload shroud of a satellite launch vehicle. The flush air data system consists of four pressure ports flushed on a blunt-cone section of the payload shroud and connected to on board differential pressure transducers. The inverse algorithm uses calibration charts which are based on computed and measured data. A controlled random search method coupled with neural network technique is employed to estimate pitch and yaw angles from measured transient differential pressure history. The algorithm predicts the flow direction stepwise with the function of flight Mach numbers and can be termed as an online method. Flow direction of the launch vehicle is compared with the reconstructed trajectory data. The estimated values of the flow direction are in good agreement with them.