• Title/Summary/Keyword: Flooded area

Search Result 169, Processing Time 0.026 seconds

폐광 전후 삼탄 광산배수의 수질특성과 의의

  • 정영욱;강상수;임길재;홍성규;조원재;조영도;전호석;민정식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.422-425
    • /
    • 2003
  • This study was carried out to apprehend the variation of quality of mine drainage in the abandoned Samtan coal mine. After closure of coal mine, although still pumping, water level in underground was raised to loom and the concentration of some elements such as Fe and Mn was elevated. At present, the worst pollution source in this area is too the acidic leachate drained from uncovered mine waste impoundment. The flow rate of mine drainage from the adit is ave. about 20,000t/d. If water were flooded and deteriorated due to stopping pumping, the impact of the mine drainage on the stream around the abandoned mine would be more severe. Therefore, It is considered that the prediction of water quality of mine drainage from the adit after stopping pumping will be very important with a view to establishing countermeasures.

  • PDF

A Forecasting Model for the Floodwave Propagation from the Hypothetical Earth Dam-Break (Earth Dam의 가상파괴로 인한 홍수파의 예측모형)

  • Lee, Jong Tae;Han, Kun Yeun;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.69-78
    • /
    • 1986
  • The floodwave propagation resulting from the earth dam-break is studied. DBF(Dam-Break Floodwave) model based on the dynamic wave equation is presented by introducing Preissmann scheme and double sweep algorithm. DBF model is applied to the Teton dam, and the numerical results have good agreements with the data observed in the peak elevation profile, the peak discharge, the flood travel time and the flooded area.

  • PDF

Development of Numerical Model for Flood Inundation Analysis in a River with GIS Application

  • Lee, Hong-Rae;Han, Kun-Yeun;Kim, Sang-Ho;Choi, Hyun-Sang
    • Korean Journal of Hydrosciences
    • /
    • v.10
    • /
    • pp.59-72
    • /
    • 1999
  • FIAS(Flood Inundation Analysis System) using Arc/Info is developed and applied to the Namhan River basin. The DWOPER model is revised and expanded to handle simultaneous multiple overtopping and/or breaking, and to estimate the inundated depth and extents. The model is applied to an actual levee overtopping case, which occurred on August 23∼27, 1995 in the Namhan River. Stage hydrographs inside and outside of the levee are compared, then inundated discharges from overbank spilling are computed. The Graphic User interface is developed with AML. Two- and three-dimensional inundation map by Arc/Info are presented. The computed inundation extends agree with observations in terms of inundated depth and flooded area. The FIAS is useful for the analysis of flood hazards and preparation of inundation map for river basins.

  • PDF

Composition and productivity of Chulwon grasslands (철원지구 초지의 구조와 생산성에 관한 연구)

  • 장남기
    • Journal of Plant Biology
    • /
    • v.11 no.4
    • /
    • pp.30-36
    • /
    • 1968
  • The vascular flora of grasslands in Mt. Kumhak, Moonheri, Sungilkyo and Kosukjong area located at Chulwon were composed of 54, 57, 45, and 39 species, the most impotant of which were Arundinella hirta and Miscanthus purpurascens. These two species contributed greatly to the standing crop of live material was in excess of 142g/$m^2$ throughout the growing season. The peak standing crop of 332.4g/$m^2$ was reached in July under flooded conditions largely as a result of the growth of Miscanthus Purpurascens and Arundinella hirta. The net production of organic matter occurred largely throughout the growing season. The net productivity of the vascular component of community was in excess of 27.3g/$m^2$ for one growing season.

  • PDF

Experimental Study on Satellite Image Restoration for Vanished Area by Dam Construction

  • Yeon, Sang-Ho;Hong, Il-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1424-1426
    • /
    • 2003
  • It will be a real good news for the people who were lost their hometown by the construction of a large dam to be restored to the former state. Focused on Cheung-Pyung around where most part were flooded by the Chungju large Dam founded in early 1980s, we used Remote Sensing Technique in this study in order to restore topographical features before the flood with 3 dimensional effects. We gathered comparatively good satellite photos and remotely sensed digital images, then we made a new color image from these and the topographical map which had been made before the flood. This task was putting together two kinds of different timed images. And then, we generated DEM including the outskirts of that area as harmonizing current contour lines with the map. That could be a perfect 3D image of Cheung-Pyung around before when it had been flood by making perspective images from all directions, north, south, east and west, for showing there in three dimensions. Also, flying simulation we made for close visiting can bring us to experience their real space at that time.

  • PDF

Relationship between RADARSAT Backscattering Coefficient and Rice Growth

  • Hong, Suk-Young;Hong, Sang-Hoon;Rim, Sang-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.109-116
    • /
    • 2000
  • This study was carried out to assess the use of RADARSAT data which is C-band with HH polarization for the rice growth monitoring in Korea. Nine time-series data were taken by shallow incidence angle (standard beam mode 5 or 6) during rice growing season. And then, backscattering coefficients ($\sigma$$^{\circ}$) were extracted by calibration process for comparing with rice growth parameters such as plant height, leaf area index(LAI), and fresh and dry biomass. Field experimental data concerned with rice growth were collected 8 times for the ground truth at the study area, Tangjin, Chungnam, Korea. At the beginning of rice growth, backscattering coefficients were ranged from -l6~-l3dB when rice fields were not covered with rice canopy and flooded. At the maximum vegetative stage of rice, backscattering coefficients of the rice field were the highest ranging from -4.4dB~-3.1dB. The temporal variation of backscattering coefficient($\sigma$$^{\circ}$) in rice field was significant in this study. Backscattering coefficient ($\sigma$$^{\circ}$) of rice field was a little bit lower again after heading stage than before. This results show RADARSAT data is promising for rice monitoring.

Strategic analysis on sizing of flooding valve for successful accident management of small modular reactor

  • Hyo Jun An;Jae Hyung Park;Chang Hyun Song;Jeong Ik Lee;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.949-958
    • /
    • 2024
  • In contrast to all-time flooded small modular reactor (SMR) systems, an in-kind flooding safety system (FSS) has been proposed as a passive safety system applicable to small modular reactors (SMRs) that adopt a metal containment vessel (MCV). Under transient conditions, the FSS can provide emergency cooling to dry reactor cavities and sustain long-term coolability using re-acquired evaporated steam in the reactor building on demand. When designing an FSS, the effect of the flooding flow area is vital as it affects the overall accident sequence and safety. Therefore, in this study, a MELCOR model of a reference SMR is developed and numerical analysis is performed under postulated accident scenarios. Without flooding, the MCV pressure of the reactor module exceeds the design pressure before core damage. To prevent core damage, an emergency flooding strategy is devised using various flow path parameters and requirements to ensure an adequate emergency coolant supply before the core damage is investigated. The results indicate that a flow area exceeding 0.02 m2 is required in the FSS to prevent MCV overpressure and core damage. This study is the first to report a strategic analysis for appropriately sizing an FSS flooding valve applicable to innovative SMRs.

A study of seasonal variation of the residual flow before and after Saemangeum reclamation (새만금간척전 .후 잔차류의 계절변화에 관한 연구)

  • 신문섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.155-161
    • /
    • 1999
  • The land reclamation area of Saemangeum(Kunsan) is located between 126$^{\circ}$10' E~126$^{\circ}$50' E and 35$^{\circ}$35' N~356$^{\circ}$05'N at the western coast of the Korean peninsula. The are many small islands including extensive areas of semi-diurnally flooded and dewatered tidal flats. The reclamation area of Saemangeum has a range of 5.6m spring tide and the maximum tidal current speed is about 1.41m s-1 in ordinary spring tide. Most of the sediments deposited on the tidal flats are transported from the Geum river, the Manjyung river and The Dongjin river. The soil in this area consists of silty sand with the depth of 10m to 30m . The wind in winter is strong from the direction of northwest. In the past twenty years, land reclamation projects for agricutural purpose or industrial cocmplex have been mostly implemented along the western coast of Korea. Saemangeum coastal area is being constructed the33km sea dike and 40, 100ha reclamation area. The purpose of this study is to find the residual circulations in four seasons after the dike construction by a robust diagnostic and prognostic numerical model. Heat flux at the sea surface in January ,May , August , October was asopted on the basis on the daily inflow of solar radiation at the earth surface, assuming an average atomospheric transmission and no clouds , as a function of latitude and time of year(George L.P.J.E William, 1990). The discharge from the Geum , the Mankyung and the Dongjin rivers was adopted on the basis of experience formula of river flow in January , May ,August, October (The M. of C.Korea, 1993) . Water temperature and salinity along the open boundaries are obtained from the results of field observation s.

  • PDF

Flooding Area Estimation and Evacuation Path Analysis (침수취약지역 추정과 주민들의 대피경로 분석)

  • Park, Jong-Duk;Choi, Jin-Mu
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Recently urban area has suffered from frequent flood event by local heavy rain. This study performed flood tests for the Jungnang river using HEC-RAS model. Based on 1m LiDAR data, river geometry data were produced using HEC-GeoRAS. For 100-year frequency flood, 200-year frequency flood, and PMF, flooding areas were estimated. Ten sub-zones of the entire flooding area were identified based on the nearest refugees and used to analyze evacuation paths to the refugees. The results showed that approximately 70% of flooded area were residential, commercial, and transportation areas so that much loss of life and property could be possible. Path analysis showed that the shortest path distances to refugees were about 1000m average. Evacuation warning given at a proper period could minimize loss of life and property. This study provides the guideline for flood evacuation plan in urban area.

Effects of Habitat Substrates on Growth of Menyanthes trifoliata (조름나물의 성장에 미치는 서식 기질의 영향)

  • Lee, Gwang-Moon;Kim, Jae-Geun
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.355-362
    • /
    • 2011
  • Bog bean (Menyanthes trifoliata L.) is an endangered species in Korea and a perennial macrophyte with long rhizome, inhabiting in oligotrophic fen or edges of montane lakes. To decide appropriate substrate type for restoration of this plant, we investigated the effect of substrates (e.g. water, Sphagnum mat, paddy soil) on growth of bog bean. There were two water conditions on paddy soils: saturated and flooded. We planted 10cm rhizome in mesocosms and measured coverage, leaf area, leaf number and rhizome biomass. Bog bean growed until August in water and Sphagnum mat and until October in paddy soil. Rhizome biomass at the end of November were 49, 77, 239, and 312g in water, Sphagnum mat, paddy soil with water saturated, and paddy soil with water flooded conditions, respectively. The results indicate that bog bean can grow better in paddy soil which have higher nutrient than water or Sphagnum mat which represents natural habitat condition of bog bean. This reveals that actual ecological niche of bog bean is different from fundamental ecological niche in substrate. For successful restoration of bog bean in nutrient rich area, it is necessary to know the competitiveness of bog bean in various substrate conditions.