• Title/Summary/Keyword: Flood risk index

Search Result 54, Processing Time 0.028 seconds

Estimating the compound risk integrated hydrological / hydraulic / geotechnical uncertainty of levee systems (수문·수리학적 / 지반공학적 불확실성을 고려한 제방의 복합위험도 산정)

  • Nam, Myeong Jun;Lee, Jae Young;Lee, Cheol Woo;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.277-288
    • /
    • 2017
  • A probabilistic risk analysis of levee system estimates the overall level of flood risk associated with the levee system, according to a series of possible flood scenarios. It requires the uncertainty analysis of all the risk components, including hydrological, hydraulic and geotechnical parts computed by employing MCMC (Markov Chain Monte Carlo), MCS (Monte Carlo Simulation) and FOSM (First-Order Second Moment), presents a joint probability combined each probability. The methodology was applied to a 12.5 km reach from upstream to downstream of the Gangjeong-Goryeong weir, including 6 levee reaches, in Nakdong river. Overtopping risks were estimated by computing flood stage corresponding to 100/200 year high quantile (97.5%) design flood causing levee overflow. Geotechnical risks were evaluated by considering seepage, slope stability, and rapid drawdown along the levee reach without overflow. A probability-based compound risk will contribute to rising effect of safety and economic aspects for levee design, then expect to use the index for riverside structure design in the future.

Risk Assessment of Levee Embankment Applying Reliability Index (신뢰도 지수를 적용한 하천제방의 위험도 평가)

  • Ahn, Ki-Hong;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.547-558
    • /
    • 2009
  • General reliability assessment of levees embankment is performed with safety factors for rainfall characteristics and hydrologic and hydraulic parameters, based on the results of deterministic analysis. The safety factors are widely employed in the field of engineering handling model parameters and the diversity of material properties, but cannot explain every natural phenomenon. Uncertainty of flood analysis and related parameters by introducing stochastic method rather than deterministic scheme will be required to deal with extreme weather and unprecedented flood due to recent climate change. As a consequence, stochastic-method-based measures considering parameter uncertainty and related factors are being established. In this study, a variety of dimensionless cumulative rainfall curve for typhoon and monsoon season of July to September with generation method of stochastic temporal variation is generated by introducing Monte Carlo method and applied to the risk assessment of levee embankment using reliability index. The result of this study reflecting temporal and regional characteristics of a rainfall can be used for the establishment of flood defence measures, hydraulic structure design and analysis on a watershed.

Assessment of Flood Vulnerability for Small Reservoir according to Climate Change Scenario - Reservoir in Gyeonggi-do - (기후변화 시나리오에 따른 소규모 저수지의 홍수 취약성 평가 - 경기도 내 저수지를 중심으로 -)

  • Heo, Joon;Bong, Tae-Ho;Kim, Seong-Pil;Jun, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.53-65
    • /
    • 2022
  • Most of the reservoirs managed by the city and county are small and it is difficult to respond to climate change because the drainage area is small and the inflow increases rapidly when a heavy rain occurs. In this study, the current status of reservoirs managed by city and county in Gyeonggi-do was reviewed and flood vulnerability due to climate change was analyzed. In order to analyze the impact of climate change, CMIP6-based future climate scenario provided by IPCC was used, and future rainfall data was established through downscaling of climate scenario (SSP8-8.5). The flood vulnerability of reservoirs due to climate change was evaluated using the concept provided by the IPCC. The future annual precipitation at six weather stations appeared a gradual increase and the fluctuation range of the annual precipitation was also found to increase. As a result of calculating the flood vulnerability index, it was analyzed that the flood vulnerability was the largest in the 2055s period and the lowest in the 2025s period. In the past period (2000s), the number of D and E grade reservoirs was 58, but it was found to increase to 107 in the 2055s period. In 2085s, there were 17 E grade reservoirs, which was more than in the past. Therefore, it is necessary to take measures against the increasing risk of flooding in the future.

Hazard Evaluation of Levee by Two-Dimensional Hydraulic Analysis (2차원 수리해석에 의한 하천 제방 위험도 평가분석)

  • Park, Jun Hyung;Kim, Tae Hyung;Han, Kun Yeun
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.45-57
    • /
    • 2016
  • Levee safety is being evaluated using one of the several failure causes including overtopping, infiltration and erosion or 1D hydraulic analysis considering physical characteristics of levee in practical engineering works. However, mentioned evaluation methods are not able to consider various failure causes of levee at the same time and to get reliable results where requires the accurate topographic information. This study proposed the flood hazard index which is able to consider several hazard factors involving overtopping, infiltration and erosion risk simultaneously. The index was generated from results of 2D hydraulic analysis reflecting accurate topographic information. The study areas are the confluences of the Nakdong River and two streams(Gamcheon and Hoecheon). Levee safety was evaluated using results based on 2D hydraulic analysis considering riverbed changes of before and after dredging work in the study area. This study will contribute to estimate the reliable safety evaluation of levee where may have hazards during extreme flood events.

Analysis on Inundation Characteristics for Flood Impact Forecasting in Gangnam Drainage Basin (강남지역 홍수영향예보를 위한 침수특성 분석)

  • Lee, Byong-Ju
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Progressing from weather forecasts and warnings to multi-hazard impact-based forecast and warning services represents a paradigm shift in service delivery. Urban flooding is a typical meteorological disaster. This study proposes support plan for urban flooding impact-based forecast by providing inundation risk matrix. To achieve this goal, we first configured storm sewer management model (SWMM) to analyze 1D pipe networks and then grid based inundation analysis model (GIAM) to analyze 2D inundation depth over the Gangnam drainage area with $7.4km^2$. The accuracy of the simulated inundation results for heavy rainfall in 2010 and 2011 are 0.61 and 0.57 in POD index, respectively. 20 inundation scenarios responding on rainfall scenarios with 10~200 mm interval are produced for 60 and 120 minutes of rainfall duration. When the inundation damage thresholds are defined as pre-occurrence stage, occurrence stage to $0.01km^2$, 0.01 to $0.1km^2$, and $0.1km^2$ or more in area with a depth of 0.5 m or more, rainfall thresholds responding on each inundation damage threshold results in: 0 to 20 mm, 20 to 50 mm, 50 to 80 mm, and 80 mm or more in the rainfall duration 60 minutes and 0 to 30 mm, 30 to 70 mm, 70 to 110 mm, and 110 mm or more in the rainfall duration 120 minutes. Rainfall thresholds as a trigger of urban inundation damage can be used to form an inundation risk matrix. It is expected to be used for urban flood impact forecasting.

A study on the development of flood plain stability evaluation Index for flood risk assessment in floodplain (홍수터에서의 홍수위험도 예측을 위한 홍수터 안정성 평가 지수 개발)

  • Ku, Young Hun;Song, Chang Geun;Park, Yong Sung;Kim, Young Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.69-69
    • /
    • 2016
  • 하천은 크게 하도와 홍수터 그리고 제방으로 나눌 수 있으며, 국내에서는 다른 국가들과 다르게 대하천사업 이후 하천의 홍수터에 생태공원이나 체육시설 등과 같은 다양한 친수시설들을 조성하여 활용하고 있다. 하지만 최근 이상기후로 인해 홍수의 발생빈도 및 강도가 증가하고 있으며 여름철 집중호우에 의한 하천의 홍수위 상승은 이러한 친수시설의 침식과 퇴적 등과 같은 침수피해를 가중시키는 원인이 되기도 한다(Ku et al., 2013). 따라서 이와 같은 홍수피해를 예측하기 위해서는 홍수터를 포함한 복단면에서의 수치해석이 선행되어야 하며, 일반적으로 2차원 수치해석이 바람직한 것으로 제안되고 있다(Sato et al., 1989). 또한 하천에서의 2차원 수치해석 결과를 이용하여 침식과 퇴적에 관한 친수시설 안정성 평가 지수를 산정할 수 있으며, 산정된 지수를 통해 홍수터에서의 홍수피해를 예측할 수 있다. 다른 국가에서는 국내와 다르게 홍수터에 대한 활용이 거의 없기 때문에 홍수에 따른 홍수터에서의 위험도를 평가한 연구는 거의 없는 실정이며, 한국에서도 홍수터에서의 홍수위험도 평가에 대한 연구는 Song et al.(2016)이 다른 국가에서 활용하고 있는 제내지에서의 홍수위험도 평가 지수를 홍수터에 도입하여 실제 태풍에 의한 홍수위험도를 간접적으로 평가한 연구 정도가 대부분이라고 볼 수 있다. 따라서 본 연구에서는 Einstein-Krone 공식(1962)을 이용하여 침식과 퇴적을 동시에 고려할 수 있는 Transient Erosion and Deposition Index(TEDI)와 Steady Erosion and Deposition Index(SEDI)를 개발하였다. 또한 개발된 지수를 실제 자연하천에 적용하여 태풍 사상에서의 산정된 지수를 통해 홍수터 안정성을 평가하였다.

  • PDF

Flooding Risk under Climate Change of Fast Growing Cities in Vietnam (베트남 급성장 도시지역의 기후변화 홍수재해 위험성 분석)

  • Kim, So Yoon;Lee, Byoung Jae;Lee, Jongso
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Vietnamese cities have a high risk of flooding under climate change due to their geographical characteristics. In this situation, the urban area is expanding with rapid growth of urban population. However, the risk of flooding is increasing due to the increase in impermeable areas and insufficient infrastructure. This study analyzed the urban expansion trend at the national level in Vietnam for the past 10 years (2007-2017) by using the Urban Expansion Intensity Index. Also, this study selected Hue City as a region with a large impact of climate change and a rapid expansion and found the possibility of flooding in the urban expansion area. The result showed that cities have been expanded around major cities in the Red River Delta, Mekong Delta, and coastal areas. In the case of Hue City, the area with fast expansion rate has a higher expected flood area. It implies that the risk of flood disasters may increase if the urabn expansion is carried out without disaster prevention measures. It is expected that Korean urban disaster prevention policies such as urban climate change disaster vulnerability analysis system will be helpful in establishing urban plans considering climate change in the fast growing regions such as Vietnam.

Estimating Real-time Inundation Vulnerability Index at Point-unit Farmland Scale using Fuzzy set (Fuzzy set을 이용한 실시간 지점단위 농경지 침수위험 지수 산정)

  • Eun, Sangkyu;Kim, Taegon;Lee, Jimin;Jang, Min-Won;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2014
  • Smartphones change the picture of data and information sharing and make it possible to share various real-time flooding data and information. The vulnerability indicators of farmland inundation is needed to calculate the risk of farmland flood based on changeable hydro-meteorological data over time with morphologic characteristics of flood-damaged areas. To find related variables show the vulnerability of farmland inundation using the binary-logit model and correlation analysis and to provide vulnerability indicators were estimated by fuzzy set method. The outputs of vulnerability indicators were compared with the results of Monte Carlo simulation (MCS) for verification. From the result vulnerability indicators are applicable to mobile_based information system of farmland inundation.

Applicability evaluation of radar-based sudden downpour risk prediction technique for flash flood disaster in a mountainous area (산지지역 수재해 대응을 위한 레이더 기반 돌발성 호우 위험성 사전 탐지 기술 적용성 평가)

  • Yoon, Seongsim;Son, Kyung-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • There is always a risk of water disasters due to sudden storms in mountainous regions in Korea, which is more than 70% of the country's land. In this study, a radar-based risk prediction technique for sudden downpour is applied in the mountainous region and is evaluated for its applicability using Mt. Biseul rain radar. Eight local heavy rain events in mountain regions are selected and the information was calculated such as early detection of cumulonimbus convective cells, automatic detection of convective cells, and risk index of detected convective cells using the three-dimensional radar reflectivity, rainfall intensity, and doppler wind speed. As a result, it was possible to confirm the initial detection timing and location of convective cells that may develop as a localized heavy rain, and the magnitude and location of the risk determined according to whether or not vortices were generated. In particular, it was confirmed that the ground rain gauge network has limitations in detecting heavy rains that develop locally in a narrow area. Besides, it is possible to secure a time of at least 10 minutes to a maximum of 65 minutes until the maximum rainfall intensity occurs at the time of obtaining the risk information. Therefore, it would be useful as information to prevent flash flooding disaster and marooned accidents caused by heavy rain in the mountainous area using this technique.

Flood risk index optimization using multiple linear regression (다중선형회귀를 이용한 홍수위험지수 최적화)

  • Kim, Myojeong;Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.283-283
    • /
    • 2016
  • 기후변화의 지역적 영향으로 호우의 강도와 빈도가 증가하고 있는 상황에서 수재해 대응을 위하여 다양한 기술들이 필요하며 특히 홍수 취약성에 대한 분석과 평가가 선행되어야 한다. 본 연구에서는 기존의 PSR(Pressure-State-Response) 모형과 DPSIR(Driving force-Pressure-StateImpact-Response 모형을 다중선형회귀 기법을 사용하여 최적화하였다(Fig. 1). 대상기간은 2008년부터 2013년까지이며, mod 1에서는 연도별로 다중선형회귀기법을 사용하여 최적 가중치를 산정하였고, mod 2에서는 대상기간(2008 ~ 2013) 전체에 대해 다중선형회귀기법을 사용하여 최적 가중치를 산정하는 방법을 적용하였다.

  • PDF