DOI QR코드

DOI QR Code

Estimating the compound risk integrated hydrological / hydraulic / geotechnical uncertainty of levee systems

수문·수리학적 / 지반공학적 불확실성을 고려한 제방의 복합위험도 산정

  • 남명준 ((주)인시티 인프라연구소) ;
  • 이재영 ((주)인시티 인프라연구소) ;
  • 이철우 (한경대학교 토목안전환경공학과) ;
  • 김기영 (한국수자원공사 K-water 연구원 기반시설연구소)
  • Received : 2017.03.07
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

A probabilistic risk analysis of levee system estimates the overall level of flood risk associated with the levee system, according to a series of possible flood scenarios. It requires the uncertainty analysis of all the risk components, including hydrological, hydraulic and geotechnical parts computed by employing MCMC (Markov Chain Monte Carlo), MCS (Monte Carlo Simulation) and FOSM (First-Order Second Moment), presents a joint probability combined each probability. The methodology was applied to a 12.5 km reach from upstream to downstream of the Gangjeong-Goryeong weir, including 6 levee reaches, in Nakdong river. Overtopping risks were estimated by computing flood stage corresponding to 100/200 year high quantile (97.5%) design flood causing levee overflow. Geotechnical risks were evaluated by considering seepage, slope stability, and rapid drawdown along the levee reach without overflow. A probability-based compound risk will contribute to rising effect of safety and economic aspects for levee design, then expect to use the index for riverside structure design in the future.

본 연구에서는 발생가능한 홍수시나리오를 기반으로 하천제방의 복합위험도를 산정하고자 하였다. 이를 위해 불확실성을 고려한 수문학적/수리학적/지반공학적의 위험도를 각각 MCMC (Markov Chain Monte Carlo), MCS (Monte Carlo Simulation), FOSM (First-Order Second Moment) 기법을 활용하여 해석하였으며, 이들 각각의 확률을 연계하여 결합확률 형태로 나타내었다. 적용대상 유역은 낙동강에 위치한 강정고령보를 기점으로 상 하류 12.5 km 구간으로 선정하였으며, 구간내의 총 6구간의 제방이 포함된다. 수문시나리오는 제방 월류가 발생하는 100년/200년 빈도 신뢰구간 상한치(97.5%)의 홍수량이 사용되었고, 이에 따른 홍수위 해석을 수행하여 월류위험도를 산정하였으며 월류가 발생하지 않는 구간에서는 침투, 사면안정, 수위급강하 등 제방의 지반공학적 위험도를 산정하였다. 기존 결정론적 위험도 해석보다 확률론적 위험도 해석에 의한 복합위험도가 제방설계에 보다 안정적, 경제적인 상승효과를 가져올 수 있을 것이며, 향후 수변구조물 설계에 지표로 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Ahn, K. H. (2008). Combined reliability model for levee embankment integrated stochastic characterization of rainfall variation. Ph. D. Thesis, Kyungpook National University.
  2. Ahn, K. H., Han, K. Y., and Kim, B. H. (2009). "Risk assessment of levee embankment applying reliability index." Journal of Korean Water Resources Association KWRA, Vol. 42, No. 7, pp. 547-558. https://doi.org/10.3741/JKWRA.2009.42.7.547
  3. Baecher, G. B., and Christian, J. T. (2003). Reliability and statistics in geotechnical engineering. John Wiley & Sons.
  4. Brizendine, A. L. (1997). Risk-based analysis of levees. Ph. D. Thesis, Univ of West Virginia.
  5. Cho, S. E. (2011). "Probabilistic seepage analysis considering the spatial variability of Permeability for layered soil." Journal of Korean Geotechnical Society KGS, Vol. 27, No. 10, pp. 93-104. https://doi.org/10.7843/kgs.2011.27.10.093
  6. Duncan, J. M. (2000), "Factors of safety and reliability in geotechnical engineering." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 4, pp. 307-316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307)
  7. Han, K. Y., Lee, J. S., and Kim, S. H. (1997). "Risk model for the safety evaluation of dam and levee : (I). theory and model." Journal of Korean Water Resources Association KWRA, Vol. 30, No. 6, pp. 679-690.
  8. Johnson, P. A. (1996). "Uncertainty of hydraulic parameters." Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 2, pp. 112-114. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:2(112)
  9. Kwon, H. H., Kim, J. G., and Park, S. H. (2013). "Derivation of flood frequency curve with uncertainty of rainfall and rainfall-runoff model." Journal of Korean Water Resources Association KWRA, Vol. 46, No. 1, pp. 59-71. https://doi.org/10.3741/JKWRA.2013.46.1.59
  10. Lee, H. R., Han, K. Y., and Kim, S. H. (1998). "Numerical model for flood inundation analysis in ariver (II) : uncertainty analysis." Journal of Korean Water Resources Association KWRA, Vol. 31, No. 4, pp. 429-437.
  11. Lee, J. Y., Nam, M. J., Kwon, H. H., and Kim, K. Y. (2016). "Flood risk estimation with scenario-based, coupled river-overland hydrodynamic modeling." Journal of Korean Water Resources Association KWRA, Vol. 49, No. 9, pp. 773-787.
  12. Mays, L. W., and Tung, Y. K. (1992). Hydro systems engineering and management. McGraw-Hill Book Co., Inc., New York, N.Y.
  13. Mazzoleni, M., Bacchi, B., Barontini, S. Di Baldassarre, G., Pilotti, M., and Ranzi, R. (2014). "Flooding hazard mapping in floodplain areas affected by piping breaches in the Po River, Italy." Journal of Hydraulic Engineering, Vol. 19, No. 4.
  14. Merkel, U., and Westrich, B. (2008). "PC-River - Probabilistic reliability analysis for river dikes." 4th International Symposium on Flood Defence, pp. 110-116.
  15. Ministry of Land, Infrastructure and Transport (2011). "Improvement and supplement of probability rainfall in South Korea".
  16. Phoon, K. K. (2008), Reliability-based design in geotechnical engineering. Taylor & Francis.
  17. Ranzi, R., Barontini, B., Mazzoleni, M., Ferri, M., and Bacchi, B. (2012). "Levee breaches and 'geotechnical uncertainty' in flood risk mapping." Proc., Int. Association for Hydro-Environment Engineering and Research (IAHR) Conf., Madrid, Spain.
  18. Reis, D. S., and Stedinger, J. R. (2005). "Bayesian MCMC flood frequency analysis with historical information." Journal of Hydrology, Vol. 313, pp. 97-116. https://doi.org/10.1016/j.jhydrol.2005.02.028
  19. Schneider, H. R., and Schneider, M. A. (2013), Modern geotechnical design codes of practice, eds. P.Arnold, G.A. Fenton, M.A. Hicks, T.Schweckendiek and B. Simpson, IOS Press, Amsterdam, pp.87-101.
  20. Scott, S., and Lall, U. (2015). "A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports." Water Resources Research, Vol. 51, No. 3, pp. 1472-1492. https://doi.org/10.1002/2014WR016664
  21. U.S Army Corps of Engineers (1999), Risk-based analysis in geotechnical for engineering support of planning studies, ETL 1110-2-556.
  22. Zhai, P. X., Zhang, X., Wan, H., and Pan, X. (2005). "Trends in total precipitation and frequency of daily precipitation extremes over China." J. Climate, Vol. 18, pp. 1096-1108. https://doi.org/10.1175/JCLI-3318.1