• Title/Summary/Keyword: Flood risk analysis

Search Result 215, Processing Time 0.027 seconds

Sensitivity Analysis of Uncertainty Sources in Flood Inundation Mapping by using the First Order Approximation Method (FOA를 이용한 홍수범람도 구축에서 불확실성 요소의 민감도 분석)

  • Jung, Younghun;Park, Jeryang;Yeo, Kyu Dong;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2293-2302
    • /
    • 2013
  • Flood inundation map has been used as a fundamental information in flood risk management. However, there are various sources of uncertainty in flood inundation mapping, which can be another risk in preventing damage from flood. Therefore, it is necessary to remove or reduce uncertainty sources to improve the accuracy of flood inundation maps. However, the entire removal of uncertainty source may be impossible and inefficient due to limitations of knowledge and finance. Sensitivity analysis of uncertainty sources allows an efficient flood risk management by considering various conditions in flood inundation mapping because an uncertainty source under different conditions may propagate in different ways. The objectives of this study are (1) to perform sensitivity analysis of uncertainty sources by different conditions on flood inundation map using the FOA method and (2) to find a major contributor to a propagated uncertainty in the flood inundation map in Flatrock at Columbus, U.S.A. Result of this study illustrates that an uncertainty in a variable is differently propagated to flood inundation map by combination with other uncertainty sources. Moreover, elevation error was found to be the most sensitive to uncertainty in the flood inundation map of the study reach.

A study on prediction method for flood risk using LENS and flood risk matrix (국지 앙상블자료와 홍수위험매트릭스를 이용한 홍수위험도 예측 방법 연구)

  • Choi, Cheonkyu;Kim, Kyungtak;Choi, Yunseok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.657-668
    • /
    • 2022
  • With the occurrence of localized heavy rain while river flow has increased, both flow and rainfall cause riverside flood damages. As the degree of damage varies according to the level of social and economic impact, it is required to secure sufficient forecast lead time for flood response in areas with high population and asset density. In this study, the author established a flood risk matrix using ensemble rainfall runoff modeling and evaluated its applicability in order to increase the damage reduction effect by securing the time required for flood response. The flood risk matrix constructs the flood damage impact level (X-axis) using flood damage data and predicts the likelihood of flood occurrence (Y-axis) according to the result of ensemble rainfall runoff modeling using LENS rainfall data and as well as probabilistic forecasting. Therefore, the author introduced a method for determining the impact level of flood damage using historical flood damage data and quantitative flood damage assessment methods. It was compared with the existing flood warning data and the damage situation at the flood warning points in the Taehwa River Basin and the Hyeongsan River Basin in the Nakdong River Region. As a result, the analysis showed that it was possible to predict the time and degree of flood risk from up to three days in advance. Hence, it will be helpful for damage reduction activities by securing the lead time for flood response.

A Study on Flood Risk Analysis for A Small Stream in Urban Residential Area (도시 주거지역 내 소하천의 홍수 안정성에 관한 연구)

  • Kwak, Jae-Won;Ahn, Kyoung-Soo;Kyoung, Min-Soo;Kim, Hung-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.195-198
    • /
    • 2008
  • In this study we analyzed flood runoff and flood characteristics of an small urban river basin which is in an apartment complex in Yewol-Dong, Buchun-Si, Gyunggi-Do. A little discharge normally flows in the river, however this small river has a relatively high potential of flood damage risk in the flood season due to the high flood level and velocity. Therefore we used the GIS data, cross section data in the river, HEC-RAS model, etc. for investigating safety of a river against flood runoff and also we investigated the stability of hydraulic structures and ability of flood prevention in the river. As the result of investigation, we found that the river had the risk of flood damage occurrence due to the hydraulic structures constructed for various purposes in the river. So we should analyze backwater effect by the structures and consider the risk factors can be occurred by the flood runoff and velocity for more safe design of a small river basin in the residential area such as an apartment complex in the urban area.

  • PDF

A Study on Inundation Analysis Considering Inland and River Flood (내수 및 외수영향을 고려한 침수해석에 관한 연구)

  • Cho, Wan-Hee;Han, Kun-Yeun;Kim, Hyeon-Sik;Kim, Jin-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.74-89
    • /
    • 2015
  • The objective of this study is to present countermeasures for mitigation of flood damage with inundation analysis considering the effect of inland and river flood and prediction of flood inundation area, depth and time against emergencies caused by abnormal flood and local torrential rainfall. In this study, 2-D inundation analysis was fulfilled on the basis of river flood analysis applying to HEC-HMS and FLDWAV model and inundation analysis applying to SWMM model for the area of Shineum-dong, Gimcheon-si. Also expected inundation depth and area about probable rainfall of 100 and 200 years frequency were suggested. If expected inundation depth and flooding area is presented on the basis of this inundation analysis considering the effect of inland and river flood, it would be an important preliminary data to establish structural and nonstructural countermeasures for flood prevention. Also if flood risk map is prepared based on the result of inundation analysis, it would be useful to evacuate residents in high-risk area and regulate road and vehicle.

Future flood frequency analysis from the heterogeneous impacts of Tropical Cyclone and non-Tropical Cyclone rainfalls in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.139-139
    • /
    • 2021
  • Flooding events often result from extreme precipitations driven by various climate mechanisms, which are often disregarded in flood risk assessments. To bridge this gap, we propose a climate-mechanism-based flood frequency analysis that accommodates the direct linkage between the dominant climate processes and risk management decisions. Several statistical methods have been utilized in this approach including the Markov Chain analysis, K-nearest neighbor (KNN) resampling approach, and Z-score-based jittering method. After that, the impacts of climate change are associated with the modification of the transition matrix (TM) and the application of the quantile mapping approach. For this study, we have selected the Nam River Basin, South Korea, to consider the heterogeneous impacts of the two climate mechanisms, including the Tropical Cyclone (TC) and non-TCs. Based on our results, while both climate mechanisms have significant impacts on future flood extremes, TCs have been observed to bring more significant and immediate impacts on the flood extremes. The results in this study have proven that the proposed approach can lead to a new insights into future flooding management.

  • PDF

Derivation of Flood Hazard Curves for SOC Facilities under Local Intensive Precipitation (LIP(극한강우) 조건하에서 중요 SOC 시설물에 대한 재해도 곡선 작성)

  • Kim, Beom Jin;Han, Kun Yeun*
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.183-194
    • /
    • 2019
  • In recent years, the risk of external flooding of major national facilities has increased significantly since 2000 due to the increase in local heavy rainfall events. For important domestic national facilities, it is necessary to analyze the risk of external flooding as flooding in major sites due to heavy rain can cause functional paralysis in major facilities and ultimately lead to massive trouble events. In order to manage the safety of main facilities and its related facilities at a high level, it is necessary to analyze the degree of disaster such as flood depth, flood flow rate, flood time and flood intensity when extreme floods (LIP) are introduced. In addition, the degree of vulnerability of these related facilities should be assessed and risk assessments should be reassessed through linkage analysis that combines the degree of disaster and vulnerability. By calculating a new flood hazard curve for the flood depth and flood intensity in major national facilities under the heavy rainfall conditions through this study, it is expected to be a basis for the waterproof design of important SOC facilities, flood prevention function design, advancement of flood prevention measures and procedures and evaluation of flood mitigation functions.

The probabilistic estimation of inundation region using a multiple logistic regression analysis (다중 Logistic 회귀분석을 통한 침수지역의 확률적 도출)

  • Jung, Minkyu;Kim, Jin-Guk;Uranchimeg, Sumiya;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • The increase of impervious surface and development along the river due to urbanization not only causes an increase in the number of associated flood risk factors but also exacerbates flood damage, leading to difficulties in flood management. Flood control measures should be prioritized based on various geographical information in urban areas. In this study, a probabilistic flood hazard assessment was applied to flood-prone areas near an urban river. Flood hazard maps were alternatively considered and used to describe the expected inundation areas for a given set of predictors such as elevation, slope, runoff curve number, and distance to river. This study proposes a Bayesian logistic regression-based flood risk model that aims to provide a probabilistic risk metric such as population-at-risk (PAR). Finally, the logistic regression model demonstrates the probabilistic flood hazard maps for the entire area.

Flood risk estimation with scenario-based, coupled river-overland hydrodynamic modeling (시나리오 기반 하천-제내지 연계 통합수리해석에 의한 홍수위험도 산정)

  • Lee, Jae Young;Nam, Myeong Jun;Kwon, Hyun Han;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.773-787
    • /
    • 2016
  • A coupled river-overland hydrodynamic model was applied to estimate flood risk by a scenario-based approach. The study area is Seongseo Industrial Complex in Daegu which is located near Nakdong river and Geumho river. Inundation depth and velocity at each time were calculated by applying a coupled 1D/2D hydrodynamic model to the target area of interest. The 2D inundation analysis for river and overland domain was performed with the scenario-based approach that there are levee overflow against 100/200 year high quantile (97.5%) design flood and levee break against 100/200 year normal quantile (50%) design flood. The level of flood risk was displayed for resident/industrial area using information about maximum depth and velocity of each node computed from the 2D inundation map. The research outcome would be very useful in establishing specified emergency action plans (EAP) in case of levee break and overflowing resulting from a flood.

Development of Probabilistic Flood Risk Map Considering Uncertainty of Levee Break (하천제방 붕괴의 불확실성을 고려한 확률론적 홍수위험지도 개발)

  • Nam, Myeong-Jun;Lee, Jae-Young;Lee, Chang-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.125-133
    • /
    • 2019
  • In this paper, probabilistic flood risk maps were produced for levee break caused by possible flood scenarios. The results of the previous studies were employed for flood stages corresponding to hydrological extreme event quantified uncertainties and then predicted the location of a levee breach. The breach width was estimated by combining empirical equation considered constant width and numerical modeling considered uncertainties on compound geotechnical component. Accordingly, probabilistic breach outflow was computed and probabilistic inundation map was produced by 100 runs of 2D inundation simulation based on reliability analysis. The final probabilistic flood risk map was produced by combining probabilistic inundation map based on flood hazard mapping methodology. The outcomes of the study would be effective in establishing specified emergency actin plan (EAP) and expect to suggest more economical and stable design index.

Risk assessment for inland flooding in a small urban catchment : Focusing on the temporal distribution of rainfall and dual drainage model (도시 소유역 내 내수침수 위험도 평가 : 강우 시간분포 및 이중배수체계 모형을 중심으로)

  • Lee, Jaehyun;Park, Kihong;Jun, Changhyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.389-403
    • /
    • 2021
  • In this study, dual drainage system based runoff model was established for W-drainage area in G-si, and considering the various rainfall characteristics determined using Huff and Mononobe methods, the degree of flooding in the target area was analyzed and the risk was compared and analyzed through the risk matrix method. As a result, the Monobe method compared to the Huff method was analyzed to be suitable analysis for flooding of recent heavy rain, and the validity of the dynamic risk assessment considering the weight of the occurrence probability as the return period was verified through the risk matrix-based analysis. However, since the definition and estimating criteria of the flood risk matrix proposed in this study are based on the return period for extreme rainfall and the depth of flooding according to the results of applying the dual drainage model, there is a limitation in that it is difficult to consider the main factors which are direct impact on inland flooding such as city maintenance and life protection functions. In the future, if various factors affecting inland flood damage are reflected in addition to the amount of flood damage, the flood risk matrix concept proposed in this study can be used as basic information for preparation and prevention of inland flooding, as well as it is judged that it can be considered as a major evaluation item in the selection of the priority management area for sewage maintenance for countermeasures against inland flooding.