DOI QR코드

DOI QR Code

Sensitivity Analysis of Uncertainty Sources in Flood Inundation Mapping by using the First Order Approximation Method

FOA를 이용한 홍수범람도 구축에서 불확실성 요소의 민감도 분석

  • 정영훈 (인하대학교 수자원시스템연구소) ;
  • 박제량 (홍익대학교 토목공학과) ;
  • 여규동 (인하대학교 수자원시스템연구소) ;
  • 이승오 (홍익대학교 토목공학과)
  • Received : 2013.07.17
  • Accepted : 2013.08.21
  • Published : 2013.11.30

Abstract

Flood inundation map has been used as a fundamental information in flood risk management. However, there are various sources of uncertainty in flood inundation mapping, which can be another risk in preventing damage from flood. Therefore, it is necessary to remove or reduce uncertainty sources to improve the accuracy of flood inundation maps. However, the entire removal of uncertainty source may be impossible and inefficient due to limitations of knowledge and finance. Sensitivity analysis of uncertainty sources allows an efficient flood risk management by considering various conditions in flood inundation mapping because an uncertainty source under different conditions may propagate in different ways. The objectives of this study are (1) to perform sensitivity analysis of uncertainty sources by different conditions on flood inundation map using the FOA method and (2) to find a major contributor to a propagated uncertainty in the flood inundation map in Flatrock at Columbus, U.S.A. Result of this study illustrates that an uncertainty in a variable is differently propagated to flood inundation map by combination with other uncertainty sources. Moreover, elevation error was found to be the most sensitive to uncertainty in the flood inundation map of the study reach.

홍수위험관리에서 홍수범람도는 가장 기본적인 자료로 사용되고 있다. 그러나 홍수범람도 구축과정에서 다양한 형태로 불확실성이 발생하기 때문에 이는 정확한 홍수 방재계획 수립에 걸림돌로 작용할 수 있다. 그러므로 불확실성 요소를 제거하거나 개선하여 홍수범람도의 정확성을 향상시키는 것이 필요하나, 모든 불확실성을 완벽하게 제거하는 것은 경제적 타당성과 홍수에 대한 지식의 한계 때문에 불가능하며 매우 비효율적일 수 있다. 또한, 홍수범람도에 전달되는 불확실성 요소의 영향은 다른 환경변수에 따라 다를 수 있기 때문에 다양한 주변 환경의 조건을 고려한 불확실성 요소에 대한 민감도 분석이 필요하다. 이를 통하여 제거해야하거나 개선시켜야할 불확실성 요소의 우선순위를 정함으로써 전략적이면서도 효율적인 홍수위험관리를 유도할 수 있을 것으로 판단된다. 본 연구는 주변 환경의 조건에 따라 홍수범람도에 미치는 불확실성 요소의 민감도를 FOA방법을 이용하여 분석하고, 이를 미국 Indiana주 Columbus시 근처의 Flatrock 강에 적용하여 홍수범람도에 가장 큰 불확실성을 전달하는 요소를 선별하였다. 본 연구결과는 하나의 불확실성 요소가 다른 입력변수나 매개변수와 같은 주변 환경에 의해 홍수범람도에 다르게 영향을 준다는 것을 확인하였으며 또한, 대상유역의 홍수범람도 구축과정에서 가장 큰 불확실성 요소는 지형자료로 판명되었다.

Keywords

References

  1. Aronica, G., Bates, P. D. and Horritt, M. S. (2002). "Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE." Hydrological Processes, Vol. 16, pp. 2001-2016. https://doi.org/10.1002/hyp.398
  2. Bales, J. D. and Wagner, C. R. (2009). "Sources of uncertainty in flood inundation maps." J. Flood Risk Manage, Vol. 2, No. 2, pp. 139-147. https://doi.org/10.1111/j.1753-318X.2009.01029.x
  3. Bates, B. C. and Towntey, L. R. (1988). "Nonlinear, discrete flood event models, 1. Bayesian estimation of parameters," J. Hydrol, Vol. 99, pp. 61-76. https://doi.org/10.1016/0022-1694(88)90078-9
  4. Bates, P. D., Horritt, M. S., Aronica, G. and Beven, K. J. (2004). "Bayesian updating of flood inundation likelihoods conditioned on flood extent data." Hydrol. Process, Vol. 18, pp. 3347-3370. https://doi.org/10.1002/hyp.1499
  5. Bates, P. D., Marks, K. J. and Horritt, M. S. (2003). "Optimal use of high-resolution topographic data in flood inundation models." Hydrolog. Process, Vol. 17, No. 3, pp. 537-557. https://doi.org/10.1002/hyp.1113
  6. Benjamin, J. R. and Cornell, C. A. (1970). Probability, statistics and decision making for civil engineers. McGraw-Hill, New York, N.Y.
  7. Blumberg, A. F. and Georgas, N. (2008). "Quantifying uncertainty in estuarine and coastal ocean circulation modeling." J. Hydr. Eng, Vol. 134, No. 4, pp. 403-415. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(403)
  8. Herschey, R. W. (2002). "The uncertainty in a current meter measurement." Flow Measur Instru, Vol. 13, pp. 281-284. https://doi.org/10.1016/S0955-5986(02)00047-X
  9. Hine, D. J. and Hall, J. W. (2006). "Convex analysis of flood inundation model uncertainties and info-gap flood management decisions." 05, Proc. 9th Int. Symp. on Stochastic Hydraulics, Nijmegen, Netherlands.
  10. Johnson, P. A. and Rinaldi, M. (1998). Uncertainty in stream channel restoration. Uncertainty modeling and analysis in civil engineering, B. M. Ayyub, ed., CRC Press, Boca Raton, Fla, pp. 425-437.
  11. Jung, Y. and Merwade, V. (2012). "Uncertainty quantification in flood inundation mapping using generalized likelihood uncertainty estimate and sensitivity analysis." J. Hydrol. Eng, Vol. 17, No. 4, pp. 507-520. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000476
  12. Lei, J. and Schilling, W. (1994). "Parameter uncertainty propagation analysis for urban rainfall runoff modeling." Water Science and Technology, Vol. 29, No. 1-2, pp. 145-154.
  13. Liu, J., Tian, F. and Huang, Q. (2001). "A risk analyzing method for reservoir flood control." Hydrology, Vol. 21, No. 3, pp. 1-3.
  14. Melching, C. S. (1992). "An improved first-order reliability approach for assessing uncertainties in hydrologic modeling." Journal of Hydrology, Vol. 132, pp. 157-177. https://doi.org/10.1016/0022-1694(92)90177-W
  15. Merwade, V., Olivera, F., Arabi, M. and Edleman, S. (2008). "Uncertainty in flood inundation mapping-Current issues and future directions." J. Hydrol. Eng, Vol. 13, No. 7, pp. 608-620. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(608)
  16. Milly, P. C. D., Wetherald, R. T., Dunne, K. A. and Delworth, T. L. (2002) "Increasing risk of great floods in a changing climate." Nature, Vol. 415, No. 31, pp. 514-517. https://doi.org/10.1038/415514a
  17. Moore, M. R. (2011). Development of a high-resolution 1D/2D coupled flood simulation of Charles city, Iowa, Master's Thesis, University of Iowa.
  18. Omer, C. R., Nelson, E. J. and Zundel, A. K. (2003). "Impact of varied data resolution on hydraulic modeling and floodplain delineation." J. Am. Water Resour. Assoc, Vol. 39, No. 2, pp. 467-475. https://doi.org/10.1111/j.1752-1688.2003.tb04399.x
  19. Pilotti, M., Maranzoni, A., Tomirotti, M. and Valerio, G. (2011). "1923 Gleno dam break: Case study and numerical modeling." J. Hydraul. Eng, Vol. 137, No. 4, pp. 480-492. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000327
  20. Purvis, M., Bates, P. D. and Hayes, C. M. (2008). "A probabilistic methodology to estimate future coastal flood risk due to sea level rise." Coastal Eng. Vol. 55, pp. 1062-1073. https://doi.org/10.1016/j.coastaleng.2008.04.008
  21. Romanowicz, R. J., Kiczko, A. and Osuch, M. (2012). "Influence of model reduction on uncertainty of flood inundation predictions." EGU General Assembly Conference Abstracts, Vol. 14, p. 4688.
  22. Sanders, B. (2007). "Evaluation of on-line DEMs for flood inundation modeling." Advances in Water Resources, Vol. 30, No. 8, pp. 1831-1843. https://doi.org/10.1016/j.advwatres.2007.02.005
  23. Sitar, N., Cawfield, J. D. and Der Kiureghian, A. (1987). "First-order reliability approach to stochastic analysis of subsurface flow and contaminant transport." Water Resour. Res, Vol. 23, pp. 794-804. https://doi.org/10.1029/WR023i005p00794
  24. Vazquez, R. F., Feyen, L., Feyen, J. and Refsgaard, J. C. (2002). "Effect of grid size on effective parameters and model performance of the MIKE-SHE code." Hydrolog. Process, Vol. 16, No. 2, pp. 355-372. https://doi.org/10.1002/hyp.334
  25. Wang, Y. and Zheng, T. (2005). "Comparison of digital elevation models and understanding of their impact on the flood extent mapping on a coastal floodplain of North Carolina." Nat. Hazards Rev, Vol. 6, No. 1, pp. 34-40. https://doi.org/10.1061/(ASCE)1527-6988(2005)6:1(34)
  26. Weichel, T., Pappenberger, F. and Schulz, K. (2007). "Sensitivity and uncertainty in flood inundation modelling - Concept of an analysis framework." Adv. Geosci, Vol. 11, pp. 31-36. https://doi.org/10.5194/adgeo-11-31-2007
  27. Zhao, X., Shen, Z., Xiong, M. and Qi, J. (2011). "Key uncertainty sources analysis of water quality model using the first order error method." Int. J. Environ. Sci. Tech, Vol. 8, No. 1, pp. 137-148. https://doi.org/10.1007/BF03326203