• Title/Summary/Keyword: Flood risk analysis

Search Result 215, Processing Time 0.029 seconds

Uncertainty Analysis for Dam-Break Floodwave Simulation (댐 붕괴 홍수모의에 대한 불확실도 해석)

  • Lee, Hong-Rae;Han, Geon-Yeon;Jo, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • DAMBRK-U model is developed for the evaluation of overtopping risk of dam and levee and for the estimation of uncertainty in floodwave simulation. The original algorithm is revised and expanded to include Monte-Carlo analysis to estimate them. The model is tested by applying to hypothetical channels of widening, uniform and narrowing geometry. Larger variation in discharge and water depth are expected at narrower sections of a river. It is calibrated by applying to the Hantan River, where severe damages from Yunchun dam-break and levee overtopping occurred on July, 1996. Overtopping risk of dam is calculated for various discharge conditions for Yunchun-dam, and that of levee is also calculated by comparing levee height with flood level at Hantan recreation area. Simulation results show that the overflow depth of flood level is 1,266~0.782 m and the overflow risk turns out to be 100%.

  • PDF

Analysis of Flooded Areas for Cadastral Information-Based Rainfall Frequencies (지적정보 기반의 강우빈도별 침수지역 분석)

  • Min, Kwan-Sik;Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.101-110
    • /
    • 2010
  • The increased occurrence of flooding due to typhoons and local rainfall has necessitated damage prevention through the systematic construction of damage history and quantitative analysis of flood prediction data. In this study, we constructed a disaster information map for practical use by combining digital images and continuous cadastral maps of damaged areas using a geographic information system to provide basic data and attribute information. In addition, we predicted the areas at risk of flash floods by calculating the flood capacity of the study area for different rainfall frequencies through flood inundation simulation, which was used to obtain comprehensive disaster information. Further, we calculated the extent of the flooded area and the damage rate for different rainfall frequencies using cadastral information. Flood inundation simulation in the case of heavy rainfall was found to help improve the ability to react to a flood and enhance the efficiency of rescue work by supporting decision-making for disaster management.

Urban Inundation Analysis using the Integrated Model of MOUSE and MIKE21 (MOUSE 및 MIKE21 통합모델을 이용한 도시유역의 침수분석)

  • Choi, Gye-Woon;Lee, Ho-Sun;Lee, So-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.75-83
    • /
    • 2007
  • Urbanized area has complex terrain with many flow paths. Almost stormwater is drained through pipe network because most area is impervious. And overland flow from the pipe network reform the surface flow. Therefore, it should be considered the drainage system and surface runoff both in urban inundation analysis. It is analyzed by using MIKE FLOOD integrated 1 dimension - 2 dimension model about Incheon Gyo urbanized watershed and compared with the results of 1 dimension model and 2 dimension model. At the result this approach linking of 2 dimension and 1 dimension pipe hydraulic model in MIKE FLOOD give accuracy that offers substantial improvement over earlier approach and more information about inundation such as water dapth, velocity or risk of flood, because it is possible to present storage of overland flow and topographical characteristic of area.

Analysis of Inundation Characteristics for EAP of Highway in Urban Stream - Dongbu Highway in Jungrang Stream - (도시하천도로의 EAP수립을 위한 침수특성분석 - 중랑천 동부간선도로를 중심으로 -)

  • Lee, Jong-Ta;Jeon, Won-Jun;Hur, Sung-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.69-76
    • /
    • 2006
  • An hydraulic and hydrologic analysis procedure was proposed to reduce the inundation damage of highway in urban stream, that could contribute the EAP and Traffic control planning of Dongbu highway in the Jungrang stream basin which is one of the representative urban area in Korea. We performed the HEC-HMS runoff analysis, and the UNET unsteady flow modeling to decide the inundation reaches and their characteristics. The high inundation risk areas were of Emoon railway bridge and the Wollueng bridge, which are inundated in the case of 10 year and 20 year frequency flood respectively. We also analyze the inundation characteristics under the various conditions of the accumulation rainfall and the duration. Flood elevation at the Wolgye-1 bridge exceed over Risk Flood Water Level(EL.17.84 m) when the accumulation rainfall is over 250 mm and shorter duration than 7 hr. When neglecting backwater effect from the Han river, inundation risk are highly at the reach C2(Wolgye-1 br. ${\sim}$Jungrang br., left bank), C1(Wolgye-1 br. ${\sim}$Jungrang br., right bank), D(Jungrang br. ${\sim}$Gunja br.) in order, but when consider the effect, the inundation risk are higher than the others at the reach D2(Jungrang br. ${\sim}$Gunja br., left bank) and E(Gunja br. ${\sim}$Yongbi br.), which are located downstream near confluence.

Analysis of large-scale flood inundation area using optimal topographic factors (지형학적 인자를 이용한 광역 홍수범람 위험지역 분석)

  • Lee, Kyoungsang;Lee, Daeeop;Jung, Sungho;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.481-490
    • /
    • 2018
  • Recently, the spatiotemporal patterns of flood disasters have become more complex and unpredictable due to climate change. Flood hazard map including information on flood risk level has been widely used as an unstructured measure against flooding damages. In order to product a high-precision flood hazard map by combination of hydrologic and hydraulic modeling, huge digital information such as topography, geology, climate, landuse and various database related to social economic are required. However, in some areas, especially in developing countries, flood hazard mapping is difficult or impossible and its accuracy is insufficient because such data is lacking or inaccessible. Therefore, this study suggests a method to delineate large scale flood-prone area based on topographic factors produced by linear binary classifier and ROC (Receiver Operation Characteristics) using globally-available geographic data such as ASTER or SRTM. We applied the proposed methodology to five different countries: North Korea Bangladesh, Indonesia, Thailand and Myanmar. The results show that model performances on flood area detection ranges from 38% (Bangladesh) to 78% (Thailand). The flood-prone area detection based on the topographical factors has a great advantage in order to easily distinguish the large-scale inundation-potent area using only digital elevation model (DEM) for ungauged watersheds.

Sub-Components Evaluation Method of Potential Flood Damage Considering Yearly Change and Improved Method (연도별 변화와 개선된 방법을 고려한 홍수피해잠재능의 세부 항목 평가 방안)

  • Hong, Seungjin;Joo, Hongjun;Kim, Kyoungtak;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.370-382
    • /
    • 2018
  • The purpose of this study is to quantitatively and effectively evaluate the factors affecting flood damage by watershed. National Water Resource Plan(MOCT, 2001) has been developed Potential Flood Damage(PFD) which indicates flood vulnerability. But, it is only a simple grouping and it does not provide guidelines for flood control planning based on detailed evaluation of sub-components. In this study, we used PFD in the Han River basin according to the method applied in the National Water Resource Plan (existing method) and improvement based on actual flood hazard area and data. As an application method, after analyzing by yearly change(2009~2014), we compared and analyzed the tendency of the sub - components that constitute the potential and risk rather than the current grouping. As the result, it was possible to accurately evaluate the existing and improved methods, and it was possible to derive the vulnerability rankings, but the existing methods have different results from the actual watershed tendency. Therefore, the PFD of the improvement method that correctly reflects past history and watershed characteristics is more appropriate for the evaluation of flood vulnerability in the watershed. In addition, it is reasonable to establish a flood control plan referring to this and prevent flood damage in advance.

Economic Assessment for Flood Control Infrastructure under Climate Change : A Case Study of Imjin River Basin (기후변화를 고려한 홍수방재시설물의 경제성분석 : 임진강 유역사례)

  • Kim, Kyeongseok;Oh, Seungik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • In Imjin River basin, three floods occurred between 1996 and 1999, causing many casualties and economic losses of 900 billion won. In Korea, flood damage is expected to increase in the future due to climate change. This study used the climate scenarios to estimate future flood damage costs and suggested a real options-based economic assessment method. Using proposed method, the flood control infrastructures in Imjin River basin were selected as a case study site to analyze the economic feasibility of the investment. Using RCP (Representative Concentration Pathway) climate scenarios, the future flood damage costs were estimated through simulated rainfall data. This study analyzed the flood reduction benefits through investment in the flood control infrastructures. The volatility of flood damage reduction benefits were estimated assuming that the RCP8.5 and RCP4.5 climate scenarios would be realized in the future. In 2071, the project option value would be determined by applying an extension option to invest in an upgrading that would allow the project to adapt to the flood of the 200-year return period. The results of the option values show that the two investment scenarios are economically feasible and the project under RCP8.5 climate scenario has more flood damage reduction benefits than RCP4.5. This study will help government decision makers to consider the uncertainty of climate change in the economic assessment of flood control infrastructures using real options analysis. We also proposed a method to quantify climate risk factors into economic values by using rainfall data provided by climate scenarios.

Analysis on Inundation Characteristics for Flood Impact Forecasting in Gangnam Drainage Basin (강남지역 홍수영향예보를 위한 침수특성 분석)

  • Lee, Byong-Ju
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Progressing from weather forecasts and warnings to multi-hazard impact-based forecast and warning services represents a paradigm shift in service delivery. Urban flooding is a typical meteorological disaster. This study proposes support plan for urban flooding impact-based forecast by providing inundation risk matrix. To achieve this goal, we first configured storm sewer management model (SWMM) to analyze 1D pipe networks and then grid based inundation analysis model (GIAM) to analyze 2D inundation depth over the Gangnam drainage area with $7.4km^2$. The accuracy of the simulated inundation results for heavy rainfall in 2010 and 2011 are 0.61 and 0.57 in POD index, respectively. 20 inundation scenarios responding on rainfall scenarios with 10~200 mm interval are produced for 60 and 120 minutes of rainfall duration. When the inundation damage thresholds are defined as pre-occurrence stage, occurrence stage to $0.01km^2$, 0.01 to $0.1km^2$, and $0.1km^2$ or more in area with a depth of 0.5 m or more, rainfall thresholds responding on each inundation damage threshold results in: 0 to 20 mm, 20 to 50 mm, 50 to 80 mm, and 80 mm or more in the rainfall duration 60 minutes and 0 to 30 mm, 30 to 70 mm, 70 to 110 mm, and 110 mm or more in the rainfall duration 120 minutes. Rainfall thresholds as a trigger of urban inundation damage can be used to form an inundation risk matrix. It is expected to be used for urban flood impact forecasting.

Hydraulic Model Test and Numerical Analysis of Grass Concrete in River Environment (자연형 호안공법의 그라스콘의 수리모형실험 및 수치해석 연구)

  • Jang, Suk-Hwan;Park, Sung-Bum;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1244-1248
    • /
    • 2007
  • This study aims at investigating the in situ applying grass concrete system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river bed which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, as well as sud critical flow measuring velocity and water surface elevation along the cross section. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF

Application of Multi Criiteria Decision Making for Vulnerability Analysis of Nakdong River Basin (낙동강 유역의 취약도 분석을 위한 다기준의사결정법의 적용)

  • Kim, Tae-Hyung;Kwak, Yung-Min;Park, Se-Jin;Han, Ku- Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.453-453
    • /
    • 2011
  • 21세기에 들어 홍수의 규모가 대형화 되었고, 그 발생빈도 및 강도도 증가하고 있다. 최근에는 지구온난화가 지속화되면서 전 세계적으로 높은 강도의 기상이변들이 속출하고 있고, 이러한 이상기후에 따른 태풍, 집중호우 등의 대규모 호우로 인해 댐 및 제방 등의 수공구조물 붕괴와 같은 비상상황이 초래 될 수 있다. 이와 같은 피해들을 통해 홍수 침수 범위의 예측, 분석을 통한 홍수위험 및 다양한 홍수위험지도 작성의 필요성이 대두되었고, 실제로 국가 차원의 홍수위 험지도가 제작되고 있다. 특히, 홍수 위험도 분석에 있어서 홍수에 노출된 지역의 인구수, 홍수에 노출된 지역에서의 경제적 활동의 형태, 홍수가 발생했을 때 2차적 피해를 불러올 수 있는 설비 등을 나타내는 홍수 취약도(Flood Vulnerability)에 대한 정량적 평가는 홍수위험지표 및 홍수위험강도 등에 의한 Flood Risk 개념을 기반으로 한 홍수위험지도 제작을 위해 매우 중요한 사항이라 할 수 있다. 그러나 현재까지의 홍수취약도 산정방법은 방법론적인 면에 있어 다소 단순하고, 직관에 의한 위험도의 분류가 이루어지고 있는 실정이다. 또한 취약도 지표의 산정과정이 전문가의 의견에 의존하는 경우가 많아 홍수 취약도 선정과정과 가중치 결정과정에 전문가들의 주관이 개입되는 등 홍수위험지표의 정량화에 어려움을 겪는 경우가 많다. 본 연구에서는 위와 같은 문제를 극복하기 위해 Flood Risk Mapping 기술의 적용에 있어 중요한 요소인 홍수취약도를 다기준의사결정법에 의해 산정하고, 국내 낙동강 유역에 대해 행정구역별로 세분화된 홍수위험지도 제작을 위한 취약도 지표를 산정하고자 하였다. 이를 위해 다기준의사결정법중의 하나 인 PROMEETEE와 ELECTRE를 이용하여 민감도, 노출도, 저감성 지표를 낙동강 유역에 대해 정량화하여 도시하였다. 본 연구결과를 통해 홍수위험지표 및 지수들의 결합에 대한새로운 방법론을 제시하고, 그에 따른 지도화 기법을 확립할 수 있을 것으로 기대된다.

  • PDF