• Title/Summary/Keyword: Flood Runoff Analysis

Search Result 357, Processing Time 0.022 seconds

Development of Korean Geomorphological Unit Hydrograph for Mountain Basins (산악지역을 위한 한국형 지형수문단위도 개발)

  • Kim, Hong-Tae;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.75-92
    • /
    • 2009
  • The development of the method for flood runoff analysis representing Korean mountain basins have been one of big concerns for Korean hydrologists for several decades. Several traditional methods dealing with unit hydrograph have been restricted to be used in Korea basins, because of its drawbacks due to its originality from other countries and the uncertainties of control parameters as well as its linearity assumption between rainfall and runoff relationship. In this paper, several geomorphological similarity relationships for Korean mountain basins was developed by using the experimental data over 40 Korean basins. Then those were applied directly to geomorphological unit hydrograph theory to meet Korean geomorphological unit hydrograph. The developed method was applied to Andong Dam basin. The results show the applicability and simplicity of the developed Korean geomorphological unit hydrograph generally for Korean mountain basins in future. It might be needed for more validations and applications of this method over Korean regions.

Impacts of Surface Roughness Integration Using Remote Sensing Data: Concentration of Flood Flow Variation (원격탐사자료를 활용한 지표면 조도계수 통합의 영향: 홍수유출 변화를 중심으로)

  • Kang, Shin-Uk;Rieu, Seung-Yup;Lee, Kil-Ha;Hwang, Man-Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.33-42
    • /
    • 2007
  • A physical-based aggregation method was suggested to estimate surface roughness, which adequately represents the spatial heterogeneity of vegetation factors, from land cover property obtained from the remote sensing data. For the sensitivity analysis of surface roughness, the peak flow, peak time, and total volume were simulated by the NWS-PC. Effects of surface roughness estimated by three different integration methods (predominant, arithmetic mean, and aggregation approach) on the conceptual rainfall-runoff model parameters was analyzed. In the preliminary sensitivity test to surface roughness, the peak time had 10% variation and total volume had 2% variation. The peak time increased with surface roughness. A physical-based aggregation method was better than the existing method in the Soyanggang Dam basin for the results of STDEV, RMSE, NSE, and PME, but difference between them were small. The parameters related on the total baseflow were changed significantly with change of the surface roughness.

  • PDF

An Analysis of Hydrologic Changes in Daechung Dam Basin using GCM Simulation Results due to Global Warming (GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 분석)

  • An, Jae-Hyeon;Yu, Cheol-Sang;Yun, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.335-345
    • /
    • 2001
  • The objective of this research is to analyze the hydrological environment changes in Daechung Dam Basin due to the global warming. GCM simulation results are used to predict the possible changes in precipitation and temperature. The changes of potential evapotranspiration, soil moisture and runoff due to the changes of precipitation and temperature are analyzed using a conceptual water balance model. From the simulation results using the water balance model for lx$CO_2$ and 2x$CO_2$ situations, it has been found that the runoff would decrease in Winter, but increase in Summer and Fall due to the global warming. Therefore, it is predicted that the frequency of drought and flood occurrences in Daechung Dam Basin would be increased in 2x$CO_2$ condition.

  • PDF

Effects of Dams and Water Use on Flow Regime Alteration of the Geum River Basin (금강 유역의 댐과 물이용에 의한 유황의 변동특성 분석)

  • Kang, Seong-Kyu;Lee, Dong-Ryul;Moon, Jang-Won;Choi, Si-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.325-336
    • /
    • 2010
  • This study presents the alteration of flow regime by effects of dams and water use in the Geum River Basin. The surface water use rate and the Impounded Runoff (IR) index were examined to assess the pressure indicators of the flow alteration. We applied the flow duration curve, flow regime coefficient, flood and low-flow frequency analysis as well as Range of Variability Approach (RVA) to investigate the quantitative changes in natural flow regimes. The results indicate that the high flow decreased and low flow increased respectively compared to the natural flow regimes at eight gauging stations. The Geum river is regulated by 139 dams and reservoirs storing 24% of the annual mean discharge and has high surface water use rate of 36%. These indicators are main pressure factors to alter flow regimes.

A Study on the Estimation of the Design Flood for Small Catchment in Jirisan (지리산 소하천유역의 홍수량 산정에 대한 고찰)

  • Chang, Hyung Joon;Kim, Seong Goo;Yoon, Young Ho;Kim, Min Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • The frequency of localized heavy rain is increasing due to the influence of abnormal climate that is rapidly increasing in recent years. As a result, the difficulty of safe water resource management is increasing and human and material damage is increasing. Various countermeasures are being established to reduce the damage caused by localized heavy rain, but small-scale mountain catchments are experiencing many difficulties due to the lack of a basic plan. Therefore in this study the risk of flooding was evaluated using the rainfall-runoff model in the Yu-pyeong catchment national park among national parks in Korea. As a result of the analysis, it was simulated that flooding occurred in the Yu-pyeong catchment of Mt. Jirisan when rainfall with a recurrence frequency of 50 years or more occurred, and it was confirmed that there was a high risk of structures, safety facilities and trails.

Analysis of Inundation Characteristics for EAP of Highway in Urban Stream - Dongbu Highway in Jungrang Stream - (도시하천도로의 EAP수립을 위한 침수특성분석 - 중랑천 동부간선도로를 중심으로 -)

  • Lee, Jong-Ta;Jeon, Won-Jun;Hur, Sung-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.69-76
    • /
    • 2006
  • An hydraulic and hydrologic analysis procedure was proposed to reduce the inundation damage of highway in urban stream, that could contribute the EAP and Traffic control planning of Dongbu highway in the Jungrang stream basin which is one of the representative urban area in Korea. We performed the HEC-HMS runoff analysis, and the UNET unsteady flow modeling to decide the inundation reaches and their characteristics. The high inundation risk areas were of Emoon railway bridge and the Wollueng bridge, which are inundated in the case of 10 year and 20 year frequency flood respectively. We also analyze the inundation characteristics under the various conditions of the accumulation rainfall and the duration. Flood elevation at the Wolgye-1 bridge exceed over Risk Flood Water Level(EL.17.84 m) when the accumulation rainfall is over 250 mm and shorter duration than 7 hr. When neglecting backwater effect from the Han river, inundation risk are highly at the reach C2(Wolgye-1 br. ${\sim}$Jungrang br., left bank), C1(Wolgye-1 br. ${\sim}$Jungrang br., right bank), D(Jungrang br. ${\sim}$Gunja br.) in order, but when consider the effect, the inundation risk are higher than the others at the reach D2(Jungrang br. ${\sim}$Gunja br., left bank) and E(Gunja br. ${\sim}$Yongbi br.), which are located downstream near confluence.

A Stiudy on the Deveplopment of Algorithm for the Representative Unit Hydrograph of a Watershed as a Closed Linear System. (폐선형계로 본 유역대표 단위유량도의 유도를 위한 알고리즘의 개발에 관한 연구)

  • 김재한;이원환
    • Water for future
    • /
    • v.13 no.2
    • /
    • pp.35-47
    • /
    • 1980
  • An algorithm is developed to derive a representative I hr-unit hydrograph through an analysis of rainfall-runoff relations of a watershed as a closed system. For the base flow seperation of a flood hydrograph the multi-deflection method is proposed herein, which gace better results compared with those by the existing empirical methods. A modified $\Phi$index method is also proposed in this stidy to determine the time distribution rainfall excess of a rainstorm, which is essetially a modification of the commonly used $\Phi$index method of rainfall seperation. With the so-obtained rainfall excess hyetograph and the direct runoff hydrograph a trial and error computation of the ordinates of 1 hr-unit hydrograph was executed in such a manner that the synthesized flood hydrograph closely approximates the observed one, thus resulting a unit hydrograph of a piecewise exponential function type. To verify the validity of this study the 1 hr-unit hydrographs for the Imha and Dongchon in Nagdong River basin, and Yongdam in Geum River basin were derived by this algorithm, and the results were compared with those by the conventional synthetic unit hydrograph method and the Nakayasu method. Besides, the validity of this stiudy was also tested by comparing the observed hydrograph with the one computed by applying the unit hydrograph to a specific rainfall event. To generalize the result of this study a computer program, consisited of a main and three subprograns (for rainfall excess estimation, convolution summation, and sorting), is developed as a package, which is believed to be applicable to other watersheds for the similar purpose as those in this study.

  • PDF

Assessment of water supply reliability under climate stress scenarios (기후 스트레스 시나리오에 따른 국내 다목적댐 이수안전도 평가)

  • Jo, Jihyeon;Woo, Dong Kook
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.409-419
    • /
    • 2024
  • Climate change is already impacting sustainable water resource management. The influence of climate change on water supply from reservoirs has been generally assessed using climate change scenarios generated based on global climate models. However, inherent uncertainties exist due to the limitations of estimating climate change by assuming IPCC carbon emission scenarios. The decision scaling approach was applied to mitigate these issues in this study focusing on four reservoir watersheds: Chungju, Yongdam, Hapcheon, and Seomjingang reservoirs. The reservoir water supply reliablity was analyzed by combining the rainfall-runoff model (IHACRES) and the reservoir operation model based on HEC-ResSim. Water supply reliability analysis was aimed at ensuring the stable operation of dams, and its results ccould be utilized to develop either structural or non-structural water supply plans. Therefore, in this study, we aimed to assess potential risks that might arise during the operation of reserviors under various climate conditions. Using observed precipitation and temperature from 1995 to 2014, 49 climate stress scenarios were developed (7 precipitation scenarios based on quantiles and 7 temperature scenarios ranging from 0℃ to 6℃ at 1℃ intervals). Our study demonstrated that despite an increase in flood season precipitation leading to an increase in reservoir discharge, it had a greater impact on sustainable water management compared to the increase in non-flood season precipitation. Furthermore, in scenarios combining rainfall and temperature, the reliability of reservoir water supply showed greater variations than the sum of individual reliability changes in rainfall and temperature scenarios. This difference was attributed to the opposing effects of decreased and increased precipitation, each causing limitations in water and energy-limited evapotranspiration. These results were expected to enhance the efficiency of reservoir operation.

Application of Urban Hydrologic Monitoring System for Urban Runoff Analysis (도시유출해석을 위한 도시수문 모니터링 기법 적용)

  • Seo, Kyu-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.37-44
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of urban river basin of Busan local. In this study, process various hydrological data and basin details data which is collected through basin basis data, hydrological monitoring system(EMS-DEU) and automatic water level equipment(AWS-DEU) for urban flood disaster prevention and use as basin input data of ILLUDAS, SWMM and HEC-HMS in order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed detention pond(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

A Experimental Study on Effluence Characteristic of the Rainfall in the IRMA Green Roof System of KICT (역지붕 녹화옥상시스템[KICT-GRS2004]의 우수유출 특성에 관한 실험적 연구)

  • Jang, Dae-hee;Kim, Hyeon-soo;Lee, Keon-ho;Moon, Soo-young
    • KIEAE Journal
    • /
    • v.5 no.2
    • /
    • pp.11-18
    • /
    • 2005
  • The Purpose of this study is development and analysis of Effluence Characteristic of the Rainfall in the IRMA Green Roof System(developed in KICT) Plus 50 program is an internal research project at KICT(Korean Institute of Construction Technology) which has it as an object ; to lengthen the building's life 50-year or more and reduce energy conception 50% than present. Green roof system is one of the most important theme in the Plus 50 program. Generally, a Green Roof System has a positive effect on the thermal conductivity in winter, the micro cooling effect on building and city by evaporation in summer, the flood-control effect by runoff-reduction or the treated rainwater-quality of green roof system and so on. However, inspection of the physical effect of green roof system does not consider in Korea. Above all, long-term monitoring and a whole observation of green roof system is needed to probate the effect. So a new experimental method could be tried in this research, which is never attempted in Korea. The measurement by a bucket with a great volume, 1L, gives a new dimension of measuring green roof effect to measure the permanent running flood from a wide roof. This offers a reasonable result on a long-term measuring of a running water. Additionally, the thermal behavior of the IRMA(Insulated Roof Membrane Assembly), known in the western europe as a reasonable solution at green roof system by economical benefits and easy construction, would be experimented.