• Title/Summary/Keyword: Floating Body Motions

Search Result 63, Processing Time 0.023 seconds

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

A 3-Dimentional Radiation Diffraction Problem Analysis by B-Spline Higher-Order Panel Method

  • Kim Gun-Do;Lee Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.10-26
    • /
    • 2006
  • The radiation problem for oscillating bodies on the free surface has been formulated by the over-determined Green integral equation, where the boundary condition on the free surface is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are removed by placing additional control points on the free surface surrounded by the body. The B-Spline based higher order panel method is then applied to solve the problem numerically. Because both the body geometry and the potential on the body surface are represented by the B-Splines, that is in polynomials of space parameters, the unknown potential can be determined accurately to the order desired above the constant value. In addition, the potential expressed in B-Spline can be differentiated analytically to get the velocity on the surface without introducing any numerical error. Sample computations are performed for a semispherical body and a rectangular box floating on the free surface for six-degrees of freedom motions. The added mass and damping coefficients are compared with those by the already-validated constant panel method of the same formulation showing strikingly good agreements.

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.

Model tests on the moored vessel with different moonpool shapes

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.137-147
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like cable-laying vessels and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modeled and tested in the wave basin. The moored lines are provided with pre-tension and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs determined for various situations provide better insight to the designer. The experiments done in the wave basin may also be compared with a software package meant for handling moored floating bodies.

A Container Stacking System for the Mobile Harbor (모바일하버에 적용할 컨테이너 적재 유도 시스템)

  • Kim, In-Su;Kim, Kwang-Hoon;Son, Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.672-678
    • /
    • 2010
  • The purpose of this study is to develop a stacking guidance system (SGS) of containers in the mobile harbor (MH). A mobile harbor is a floating structure especially designed for loading and unloading containers from and to a large container ship. A novel stacking guidance system was proposed for unloading the container in an effective way against possible vibrations of the floating body. The guidance system works as an aid for loading containers with a wider opening for easier stacking of a container into a moving storage cell due to waves. In order to determine the most effective inclination angle of the cell-guide, this study performed the dynamic analysis of the SGS equipped in the MH subject to fluctuations of the sea. The motions of the guidance system and a container loaded were calculated using ADAMS. The simulation results of the contact force between the two rigid bodies showed that a desirable angle of the cell-guide should be around 20 degrees from the vertical. This proposed SGS can considerably reduce the loading and unloading time, and will enhance the performance of the MH.

On Two-Dimensional Large-Amplitude Motions in Regular Wave (규칙파중에서의 주상체의 대진폭 운동에 관한 연구)

  • Yong-Jig,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.25-31
    • /
    • 1989
  • Two-dimensional large-amplitude motions in regular harmonic wave are treated in time domain, by satisfying the exact body boundary condition and the linear free surface condition. For the present numerical calculation, the method of free-surface spectral representation with simple source distribution on the instantaneous body surface has been extended to include the effect of the incident wave. Calculations of the wave exciting force are performed for a submerged circular cylinder fixed or oscillating with large amplitude. Especially, nonlinear effects on the time-mean forces are studied in detail. It is shown that relative motion between the body and the fluid particle gives a significant effect on the lift and drift forces. Also, large-amplitude motion of a submerged circular cylinder and that of a floating Lewis-form cylinder are directly simulated in time domain. In the calculation results, some nonlinear effects are shown.

  • PDF

Time-Domain Analysis on Motion Response of Adjacent Multiple-Bodies in Waves (파랑 중 근접한 다중 물체의 운동응답에 대한 시간영역 해석)

  • Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • This study considers the motion response of multiple adjacent floating bodies in waves. As a method of solution, a three-dimensional Rankine panel method is adopted in time domain. For the validation of the developed numerical method, the motions of two adjacent Series 60 hulls and ship-barge model are estimated. The computational results are compared with other numerical and experimental analyses, showing favorable agreement.

Two Dimensional Flexible Body Response of Very Large Floating Structures (거대 부체구조물의 2차원 유연체 해석 및 거동)

  • Namseeg Hong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.274-286
    • /
    • 1996
  • Two-dimensional flexible body analysis (hydroelasticity theory) is adopted to a very large floating structure that may be multimodule and extend in the longitudinal direction. The boundary-element method (BEM) and Green function method(GFM) are used to obtain the hydrodynamic coefficients. The structure is considered to be a flexible beam responding to waves in the vertical direction and a consistent formulation for the hydrostatic stiffness is derived. The resulting coupled equations of motion are solved directly. Two designs of the module connectors are considered: a rotationally-flexible hinge connector, and a rotationally-rigid connector Numerical examples are presented to an integrated system of semi-submersibles. The analysis provides basic motions and section forces, which are useful to develop an understanding of the fundamental modes of displacement and force amplitudes for which multi-module VLFSs must be designed. The results show that while the hinge connectors result in greater motion, the rigid connectors increase substantially the sectional moments.

  • PDF

Investigation on the Behavioral and Hydrodynamic Characteristics of Submerged Floating Tunnel based on Regular Wave Experiments (규칙파 실험에 의한 수중터널의 거동 및 동수역학적 특성 고찰)

  • Oh, Sang-Ho;Park, Woo Sun;Jang, Se-Chul;Kim, Dong Hyawn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1887-1895
    • /
    • 2013
  • In this study, physical experiments were performed in a two-dimensional wave flume to investigate the hydraulic and structural performance of a SFT model. The experiments were made by generating regular waves of different heights and periods under various conditions of buoyancy to weight ratio (BWR) and water depth as well. Through the analysis of the experimental data, it was clarified that the sway and heave motions of the tunnel body linearly increased with wave height and period. In contrast, the roll motion was rather insignificant unless wave height and period were comparatively large as the design wave. Similarly proportional relationship with respect to wave height and period was obtained in case of the maximum tensile force acting on the tension legs and the wave loads on the tunnel body. Regarding the change of water depth or BWR conditions, generally decreasing trend was obtained according to increase of water depth but decrease of BWR for both of the magnitudes of structural behaviors or wave loadings on the SFT structure.

Theatrical Research an Generated Power of Float-Counterweight Wave Converters (부유체-균형추 파력발전장치의 전력에 대한 이론적 연구)

  • Lee, Sung-Bum;Lee, Seung-Keon;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.26-32
    • /
    • 2015
  • The authors are developing a motion of floater body type wave energy converter of the float-counterweight system. This consists of the driving pulley, wire, float and counterweight suspended from idler pulleys and rachet mechanism. Though it has succeeded in solving the major structural strength problem in which the floats would slam against adjacent structure(s) by wave load acting horizontally. In order to overcome this problem. We propose a new system in which the wire transmitting the power is wound around the pulleys and the float receiving the wave power is pulled by the wire from both its upper and lower ends to avoid the occurrence of slackening during the wave cycle. In the paper, we developed the dynamics model for the proposed system. Energy gain has been calculated for realistic wave conditions and compared with the original float-counterweight device. The important differences from the float-counterweight system are that (1) both upward and downward motions of water surface can be utilized without problem. (2) slackening of energy gain and wire tension are effectively suppressed, and (4) for the same time averaged energy gain, the maximum wire tension is fairly lowered.