DOI QR코드

DOI QR Code

Investigation on the Behavioral and Hydrodynamic Characteristics of Submerged Floating Tunnel based on Regular Wave Experiments

규칙파 실험에 의한 수중터널의 거동 및 동수역학적 특성 고찰

  • Received : 2013.05.15
  • Accepted : 2013.08.06
  • Published : 2013.09.30

Abstract

In this study, physical experiments were performed in a two-dimensional wave flume to investigate the hydraulic and structural performance of a SFT model. The experiments were made by generating regular waves of different heights and periods under various conditions of buoyancy to weight ratio (BWR) and water depth as well. Through the analysis of the experimental data, it was clarified that the sway and heave motions of the tunnel body linearly increased with wave height and period. In contrast, the roll motion was rather insignificant unless wave height and period were comparatively large as the design wave. Similarly proportional relationship with respect to wave height and period was obtained in case of the maximum tensile force acting on the tension legs and the wave loads on the tunnel body. Regarding the change of water depth or BWR conditions, generally decreasing trend was obtained according to increase of water depth but decrease of BWR for both of the magnitudes of structural behaviors or wave loadings on the SFT structure.

이 연구에서는 2차원 조파수조에서 수리모형실험을 실시하여 수중터널 모형의 수리학적, 구조적 성능을 고찰하였다. 수심 및 부력 대 자중비를 다양하게 변화시킨 조건에서 파고 및 주기가 서로 다른 규칙파를 조파하여 실험을 수행하였다. 실험 자료의 분석을 통해서 연직방향 및 횡방향 동요가 파고 및 주기에 따라 선형적으로 증가함을 확인하였다. 반면에, 회전 운동의 크기는 파고 및 주기가 설계파 정도로 커지지 않으면 별로 크게 나타나지 않았다. 마찬가지로, 계류장력 및 수중터널에 작용하는 파력도 파고 및 주기에 따라 선형적으로 증가하였다. 수심 및 부력 대 자중비의 변화와 관련해서는, 구조적 거동 및 수중터널에 작용하는 파력의 크기 모두 수심 증가 및 부력 대 자중비 감소에 따라서 전체적으로 감소하는 경향이 나타났다.

Keywords

References

  1. Dong, M.-S., Miao, G,-P., Yong, L.-C., Niu, Z.-R., Pang, H.-P. and Hou, C.-Q. (2012). "Effects of escape device for submerge floating tunnel (SFT) on hydrodynamic loads applied to SFT." J. Hydro. Ser. B, Vol. 24, No. 4, pp. 609-616. https://doi.org/10.1016/S1001-6058(11)60284-9
  2. FEHRL (1996). Analysis of the submerged floating tunnel concept. Transport Research Laboratory, Crowthorne, Berkshire, United Kingdom.
  3. Grantz, W. C. (2010). "Conceptual study for a deep water, long span, submerged floating tunnel (SFT) crossing." Proc. Engrg., Vol. 4, pp. 61-70. https://doi.org/10.1016/j.proeng.2010.08.008
  4. Han, S.-H. (2012). "Risk assessment of submerged floating tunnels based on fuzzy AHP." J. Korean Acad.-Indust. Coop. Soc., Vol. 13, No. 7, pp. 3244-3251 (in Korean). https://doi.org/10.5762/KAIS.2012.13.7.3244
  5. Hong, Y. and Ge, F. (2010). "Dynamic response and structural integrity of submerged floating tunnel due to hydrodynamic load and accidental load." Proc. Engrg., Vol. 4, pp. 35-50. https://doi.org/10.1016/j.proeng.2010.08.006
  6. Jakobsen, B. (2010). "Design of the Submerged Floating Tunnel operating under various conditions." Proc. Engrg., Vol. 4, pp. 71-79. https://doi.org/10.1016/j.proeng.2010.08.009
  7. Jeong, S. T., Kim, J. D., Ko, D. H., Kim, D. H. and Park, W. S. (2008). "Wave reflection and transmission from buoyant flap typed storm surge barriers - hydraulic experiments." J. Korean Soc. Coast. Oc. Engrs., Vol. 20, No. 2, pp. 238-245 (in Korean).
  8. Kanie, S., Mikami, T. and Kakuta, Y. (1997). "Dynamic characteristics of submerged floating tunnels due to wave force." Proc. JSCE, No. 556, pp. 159-168.
  9. Kanie, S. (2010). "Feasibility studies on various SFT in Japan and their technological evaluation." Proc. Engrg., Vol. 4, pp. 13-20. https://doi.org/10.1016/j.proeng.2010.08.004
  10. Kunish, H. (2010). "Evaluation of wave force acting on submerged floating tunnels." Proc. Engrg., Vol. 4, pp. 99-105. https://doi.org/10.1016/j.proeng.2010.08.012
  11. Lu, W., Ge, F., Wang, L., Wu, X. and Hong, Y. (2011). "On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions." Mar. Struct., Vol. 24, pp. 358-376. https://doi.org/10.1016/j.marstruc.2011.05.003
  12. Mazzolani, F. M., Faggiano, B. and Martire, G. (2010). "Design aspects of the AB prototype in the Qingdao Lake." Proc. Engrg., Vol. 4, pp. 21-33. https://doi.org/10.1016/j.proeng.2010.08.005
  13. Ostlid, H. (2010). "When is SFT competitive?" Proc. Engrg., Vol. 4, pp. 3-11. https://doi.org/10.1016/j.proeng.2010.08.003
  14. Park, W.-S., Oh, S.-H., Han, S.-H. and Baek, W.-D. (2012). "Wave forces acting on submerged floating tunnels." Proc. Coast. Oc. Engrg. Korea, pp. 138-141 (in Korean).
  15. Society of submerged floating tunnel technology (1997a). Submerged floating tunnel - I. From planning to design and construction (in Japanese).
  16. Society of submerged floating tunnel technology (1997b). Submerged floating tunnel - II. Case Study (in Japanese).
  17. Tariverdilo, S., Mirzapour, J., Shahmardani, M., Shabani, R. and Gheyretmand, C. (2011). "Vibration of submerged floating tunnels due to moving loads." Appl. Math. Model., Vol. 35, pp. 5413-5425. https://doi.org/10.1016/j.apm.2011.04.038

Cited by

  1. Hydrodynamic Analysis of Submerged Floating Tunnel Structures by Finite Element Analysis vol.36, pp.6, 2016, https://doi.org/10.12652/Ksce.2016.36.6.0955
  2. Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System pp.2093-6311, 2018, https://doi.org/10.1007/s13296-018-0102-2