DOI QR코드

DOI QR Code

Rheological Characteristics of Fine-Grained Soil with Sand Content

세립토의 모래함량에 따른 유변학적 특성 분석

  • Received : 2012.11.20
  • Accepted : 2013.07.17
  • Published : 2013.09.30

Abstract

Rheological properties such as yield stress and viscosity is the main parameters to determine the fluidity of the debris flow. In this study, several series of rheometer tests were performed to investigate rheological properties of fine-grained soil samples with various sand contents and various liquidity indices. Test results indicated that the general shape of the flow curves for fine-grained soils had characteristics of a shear thinning fluid, with a decrease in viscosity as shear rate increases. The yield stress and viscosity of fine-grained soil samples with same sand content gradually decreased as the liquidity index increased. At the same liquidity index, yield stress and viscosity of fine-grained soil increased with an increase in sand content. The yield stress and viscosity of fine-grained soil greatly decreased with a slight increase in water content. Also, the yield stress and viscosity tend to increase with increasing concentration by volume($C_v$) of the fluid matrix. The values of the four coefficients ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, and ${\beta}_2$ were obtained by regression analysis for each fine-grained soil.

항복응력, 점성과 같은 유변학적 특성은 토석류의 유변성을 결정하는 주요 매개변수이다. 본 연구에서는 다양한 액성지수와 모래함량을 가지는 세립토를 대상으로 유변측정 시험을 수행하였다. 이를 통해 전단응력-전단변형률속도 관계, 액성지수와 점성 및 항복응력 관계, 체적농도와 점성 및 항복응력 관계 등과 같은 다양한 분석을 통해 모래함량을 달리하는 흙에 대한 유변학적 특성을 파악하였다. 유변측정 시험 결과로부터 세립토의 유동곡선 특성은 전단변형률속도가 점차 커짐에 따라 곡선의 기울기가 감소하는 전형적인 전단담화(shear thinning)의 거동 형태를 나타냄을 알 수 있다. 동일한 모래함량을 갖는 시료에서 액성지수가 증가함에 따라 항복응력과 점성은 감소하는 경향을 보이며, 동일 액성지수 상태에서 모래함량이 커짐에 따라 항복응력과 점성 모두 증가하는 것으로 나타났다. 항복응력과 점성은 약간의 함수비 증가에도 크게 감소함을 알수 있다. 체적농도($C_v$)가 증가함에 따라 항복응력과 점성은 증가하는 경향을 나타낸다. 회귀분석을 통해 임의의 체적농도($C_v$)에 대한 항복응력과 점성의 계수 ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, ${\beta}_2$를 산정하였다.

Keywords

References

  1. Barnes, H. A., Hutton, J. F. and Walters, K. (1989). "An introduction to rheology." Elsevier science Ltd, pp. 11-36.
  2. Coussot, P. and Piau, J.-M. (1994). "On the behavior of fine mud suspensions." Rheol. Acta., Vol. 33, Issue 3, pp. 175-184. https://doi.org/10.1007/BF00437302
  3. Ilstad, T., Elverhi, A., Issler, D. and Marr, J. G. (2004). "Subaqueous debris flow behavior and its dependence on the sand/clay ratio: A Laboratory Study Using Particle Tracking." Marine Geology, Vol. 213, pp. 415-438. https://doi.org/10.1016/j.margeo.2004.10.017
  4. Jeong, S. W. (2010). "Grain size dependent rheology on the mobility of debris flows." Geosciences Journal, Vol. 4, No. 4, pp. 359-369.
  5. Jeong, S. W. (2011). "Rheological models for describing fine- laden debris flows: Grain-Size Effect." Journal of the Korean Geotechnical Society, Vol. 27, No. 6, pp. 49-61 (in Korean). https://doi.org/10.7843/kgs.2011.27.6.049
  6. Kim, S. K. and Seo, H. S. (1997a). "Rheological characteristic of debris flow." Journal of the Korean Geotechnical Society, Vol. 13, No. 5, pp. 125-131 (in Korean).
  7. Kim, J. H. (1995). "Interpretation and application of debris flow." The Magazine of the Korean Society of Civil Engineers, Vol. 43, No. 9, pp. 100-103 (in Korean).
  8. Kim, S. K. and Seo, H. S. (1997b). "An analysis of debris flow movements using rheological model." Journal of the Korean Geotechnical Society, Vol. 13, No. 5, pp. 133-143 (in Korean).
  9. Lee, M. J. and Kim, Y. T. (2013). "Movement and deposition characteristics of debris flow according to rheological factors." Journal of the Korean Geotechnical Society, Vol. 29, No. 5, pp. 19-27 (in Korean). https://doi.org/10.7843/kgs.2013.29.5.19
  10. Locat, J. (1997). "Normalized rheological behavior of fine muds and their flow properties in a pseudoplastic regime." Proc. 1st Int. Conf. on Debris-Flow Hazards Mitigation, San Francisco, ASCE, New York, pp. 260-269.
  11. Locat, J. and Demers, D. (1988). "Viscosity, yield stress, remoulded strength, and liquidity index relationships for sensitive clays." Can. Geotech. J., Vol. 25, pp. 709-806.
  12. Malet, J.-P., Laigle, D., Remaitre, A. and Maquaire, O. (2005). "Triggering conditions and mobility of debris flows associated to complex earthflows." Geomorphology, Vol. 66, pp. 215-235. https://doi.org/10.1016/j.geomorph.2004.09.014
  13. O'Brien, J. S. and Julien, P. Y. (1988). "Laboratory analysis of mudflow properties." Journal of Hydraulic Engineering, Vol. 114, No. 8, pp. 877-887. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
  14. O'Brien, J. S., Julien, P. Y. and Fllerton, W. T. (1993). "Twodimensional water flood and mudflow simulation." Journal of Hydraulic Engineering, Vol. 119, No. 2, pp. 244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)

Cited by

  1. Evaluation of the viscosity of tropical soils for debris flow analysis: a new approach vol.66, pp.7, 2016, https://doi.org/10.1680/jgeot.15.P.080