Study on Thermal Performance of Energy Textile in Tunnel

터널 지열 활용을 위한 에너지 텍스타일의 열교환 성능 연구

  • 이철호 (한국건설기술연구원, SOC성능연구소, Geo-인프라연구실) ;
  • 박상우 (고려대학교 건축사회환경공학부) ;
  • 손병후 (한국건설기술연구원, 공공건축연구본부, 그린빌딩연구실) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2012.12.26
  • Accepted : 2013.08.07
  • Published : 2013.09.30


Textile-type heat exchangers installed on the tunnel walls for facilitating ground source heat pump systems, so called "energy textile", was installed in an abandoned railroad tunnel around Seocheon, South Korea. To evaluate thermal performance of the energy textile, a series of long-term monitoring was performed by artificially applying daily intermittent cooling and heating loads on the energy textile. In the course of the experimental measurement, the inlet and outlet fluid temperatures of the energy textile, pumping rate, temperature distribution in the ground, and air temperature inside the tunnel were continuously measured. From the long-term monitoring, the heat exchange rate was recorded as in the range of 57.6~143.5 W per one unit of the energy textile during heating operation and 362.3~558.4 W per one unit during cooling operation. In addition, the heat exchange rate of energy textile was highly sensitive to a change in air temperature inside the tunnel. The field measurements were verified by a 3D computational fluid dynamics analysis (FLUENT) with the consideration of air temperature variation inside the tunnel. The verified numerical model was used to evaluate parametrically the effect of drainage layer in the energy textile.

터널 내부의 지열을 활용하여 지열 냉난방 시스템 가동에 필요한 열에너지를 얻을 수 있는 텍스타일 형태의 지중열교환기(에너지 텍스타일)를 충남 서천군 일대의 철도 폐터널 벽면에 시험 시공하였다. 현장에 설치된 에너지 텍스타일의 성능을 평가하기 위해 냉방 운영과 난방 운영에 대한 일일 냉난방 모사 시험을 수행하였다. 일일 냉난방 모사 시험을 진행하는 동안 터널 벽면에 설치된 지중 열교환기로 유입/유출되는 순환수의 온도, 순환 유량, 터널 벽면 내부 지반의 온도, 터널 내부의 온도를 지속적으로 측정하였다. 시험을 통해 현장에 설치된 에너지 텍스타일은 난방가동에서 에너지 텍스타일 유닛당 57.6~143.5 W의 열교환률을 보였고 냉방가동에서는 362.3~558.4 W의 열교환률을 보였다. 또한, 시험결과로부터 터널에 설치된 지중열교환기의 열교환 성능은 터널 내부 기온의 변화에 큰 영향을 받는 것으로 나타났다. 또한, 전산유체 수치해석을 통하여 터널 내부 기온 변화를 고려한 현장 시험을 모사하여 적용된 수치해석 모델을 검증하였다. 검증된 수치해석 모델을 이용하여 콘크리트 라이닝 내부의 유도 배수재 설치 유무에 따른 에너지 텍스타일의 열적 거동에 대한 매개변수 연구를 수행하였다.



Grant : 운용 중 공간확장이 가능한 지하 굴착 및 안정화 기술 개발

Supported by : 건설교통과학기술진흥원, 한국건설기술연구원


  1. Adam, D. and Markiewicz, R. (2009). "Energy from earth-coupled structures, foundations, tunnels and sewers." Geotechnique, Vol. 59, No. 3, pp. 229-236.
  2. Brandl, H. (2006). "Energy foundations and other thermo-active ground structures." Geotechnique, Vol. 56, No. 2, pp. 81-122.
  3. Baujard, C. and Kohl, T. (2010). "Evaluation of the potential use of geothermal heat exchangers in the CEVA tunneling project." World Geothermal Congress 2010, 25-29 April, Bali, Indonesia.
  4. Engineering Toolbox Website. Available at: http://engineeringtoolbox. com.
  5. EPA (1993). Space conditioning: The Next Frontier, Office of Air and Radiation, 430-R-93-0044 (4/93), US Energy Protection Agency, Washington DC.
  6. Franzius, J. N. and Pralle, N. (2011). "Turing segmental tunnels into sources of renewable energy." Proceedings of ICE Civil Engineering 2011, Paper No. 164, pp. 35-40.
  7. FLUENT (2010). ANSYS manual ver. 12.0, Fluent Inc.
  8. Gao, J., Zhang, X., Liu, J., Li, K. and Yang, J. (2008). "Numerical and experimental assessment of thermal performance of vertical energy pile." Applied Energy, An application, Vol. 85, pp. 901-910.
  9. Gil, H., Lee, K., Lee, C. and Choi, H. (2009). "Numerical evaluation on thermal performance and sectional efficiency of closed-loop vertical ground heat exchanger." Journal of Korean Geotechnical Society, Vol. 25, No. 3, pp. 57-64.
  10. Hahn, J., Hahn, G., Hahn, H. and Hahn, C. (2005). Geothermal Heat Pump System, Hanrimwon (in Korean).
  11. Johnston, I. W., Narsillio, G. A. and Colls, S. (2011). "Emerging geothermal energy technologies." Journal of Civil Engineering, KSCE, Vol. 15, No. 4, pp. 643-653.
  12. Jun, L., Zhang, X., Gao, J. and Yang, J. (2009). "Evaluation of heat exchange rate of GHW in geothermal heat pump system." Renewable Energy, Vol. 34, pp. 2898-2904.
  13. Launder, B. E. and Spalding, D. B. (1972). Lectures in mathematical models of turbulence, Academic Press, London, England.
  14. Laloui, L., Nuth, M. and Vulliet, L. (2006). "Experimental and numerical investigations of the behavior of a heat exchanger pile." Int J Numer Anal Meth Geomech, Vol. 30, pp.763-781.
  15. Lee, C., Park, M., Min, S., Kang, S. H., Sohn, B. and Choi, H. (2011). "Comparison of effective thermal conductivity in closedloop vertical ground heat exchangers." Applied Thermal Engineering, Vol. 31, pp. 3669-3676.
  16. Lee, C., Park, M., Jeoung, J., Shon, B. and Choi, H. (2012). "Evaluation of thermal performance of energy textile installed in tunnel." Renewable Energy, Vol. 42, June 2012, pp. 11-22.
  17. Markiewicz, R. (2004). Numerische und experimentelle Untersuchungen zur Nutzung von geothermischer Energie mittels erdberuhrter Bauteile und Neuentwicklungen für den Tunnelbau, Doctoral Thesis, Institute for Soil Mechanics and Geotechnical Eng., Technical Univ. of Vienna, Austria (in German).
  18. Nam, Y., Ooka, R. and Hwang, S. (2008). "Development of a numerical model to predict heat exchange rate for a groune source heat pump system." Energy and Building, Vol. 40, pp. 2113-2140.
  19. Nam, Y. and Ooka, R. (2011). "Development of potential map for ground and groundwater heat pump systems and application to Tokyo." Energy and Building, Vol. 43, pp. 677-685.
  20. Pahud, D. and Hubbuch, M. (2007). "Measured thermal performances of the energy pile system of the dock midfield at zürich airport." Proceedings European Geothermal Congress 2007 Unterhaching, Germany, 30 May-1 June 2007.
  21. Rehau (2011). Geothermal tunnel lining, Available at: http://www.