• Title/Summary/Keyword: Flight performance test

Search Result 425, Processing Time 0.028 seconds

Priority Based Multi-Channel MAC Protocol for Real-Time Monitoring of Weapon Flight Test Using WSNs

  • Min, Joonki;Kim, Joo-Kyoung;Kwon, Youngmi;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • Real-time monitoring is one of the prime necessities in a weapon flight test that is required for the efficient and timely collection of large amounts of high-rate sampled data acquired by an event-trigger. The wireless sensor network is a good candidate to resolve this requirement, especially considering the inhospitable environment of a weapon flight test. In this paper, we propose a priority based multi-channel MAC protocol with CSMA/CA over a single radio for a real-time monitoring of a weapon flight test. Multi-channel transmissions of nodes can improve the network performance in wireless sensor networks. Our proposed MAC protocol has two operation modes: Normal mode and Priority Mode. In the normal mode, the node exploits the normal CSMA/CA mechanism. In the priority mode, the node has one of three grades - Class A, B, and C. The node uses a different CSMA/CA mechanism according to its grade that is determined by a signal level. High grade nodes can exploit more channels and lower backoff exponents than low ones, which allow high grade nodes to obtain more transmission opportunities. In addition, it can guarantee successful transmission of important data generated by high grade nodes. Simulation results show that the proposed MAC exhibits excellent performance in an event-triggered real-time application.

Development of Transient Simulation Program for Smart UAV Propulsion System (스마트 무인기 추진기관의 천이 모사 프로그램 개발)

  • Lee, Chang-Ho;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • The Smart UAV must have the control characteristics of propulsion system necessary for both rotary aircraft and fixed wing aircraft though it equips turbo-shaft engine. To develop an electronic engine controller in the future, it is necessary to accumulate the experience of engine operation and data of tilt rotor aircraft. For this purpose, the computer programs which predict engine performance in the steady state and transient state can be utilized for the supplementation of flight test data. In this work, we developed a dynamic analysis program using engine performance data gathered during the flight tests. In addition the accuracy of the program was verified through comparison with flight test data and the results of steady-state performance analysis program.

In-Flight Prediction of Solid Rocket Motor Performance for Flight Control (비행제어를 위한 비행 중 고체로켓 추력 예측 방법)

  • Lee, Yong-In;Cho, Sungjin;Choe, Dong-Gyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.816-821
    • /
    • 2015
  • In this paper, an in-flight prediction method of thrust profiles for solid rocket motors is proposed. Actually, it is very difficult to have detailed information about the performance of the rocket motors beforehand because it is quite sensitive to combustion environments. To overcome this problem, we have developed an algorithm for generating in-flight prediction of rocket motor performance in realistic environments via a reference burnback profile and accelerations measured at a short time-interval just after launch. The performance is evaluated through a lot of flight test results.

Development of Low-Cost Automatic Flight Control System for Unmanned Target Drone

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.367-371
    • /
    • 2004
  • This paper describes development of automatic flight control system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated now days use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of automatic flight control system is verified by flight test.

  • PDF

Analysis of Flight Test Result for Control Performance of Smart UAV (스마트무인기의 비행제어 성능관련 비행시험 결과분석)

  • Kang, Young-Shin;Park, Bun-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.22-31
    • /
    • 2013
  • Flight tests on flight control performance of helicopter, conversion and airplane mode for the Smart UAV were completed. Automatic take-off and landing, automatic return home as well as automatic approach to hover were performed in helicopter mode. Climb/descent, left/right turn using speed and altitude hold mode were performed in each $10^{\circ}$ tilt angle in conversion mode. The rotor speed in airplane mode was reduced to 82% from 98% RPM in order to increase rotor efficiency with reducing Mach number at tip of rotors. It reached to the designed maximum speed, $V_{TAS}$=440 km/h at 3 km altitude. This paper presents the flight test result on full envelopment of Smart UAV. Detailed test plan and test data on control performance were also presented to prove that all data meets the flying qualities requirement.

Free-wing Tilt-body Aircraft Controllerability Analysis (자유날개 동체꺾임형 항공기의 조종성 해석)

  • Park, Wook-Je
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The free-wing tilt-body aircraft is researched in the flight performance characteristics such as short take-off and landing capability, and reduced sensitivity to gust and center of gravity (CG) change. Due to the main wing separating from the fuselage, the high tiltable empennage, and the stub-wing strongly influencing from the propeller wake, the resulting vehicle aerodynamics and flight dynamics are quite different from those of a conventional fixed-wing aircraft. Using the governing flight dynamics model was studied previously, all of speed and body tilt angle is simulated to determine the flight envelope by a non-linear 3-DOF flight simulation analysis. Though flight performance and trimmability are studied, the flight model of free-wing tilt-body aircraft is to reduce the hidden risk and to achieve the successful flight test. It is analyzed the flight characteristics that distinguishes free-wing tilt-body aircraft from the conventional aircraft.

Development of a UAV Flight Control System Using a Low Cost GPS/IMU (저가형 GPS/IMU를 이용한 UAV 비행 제어 시스템 개발)

  • Koo, Won-Mo;Chun, Se-Bum;Won, Dae-Hee;Kang, Tae-Sam;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.502-510
    • /
    • 2008
  • UAVs(Unmanned Aerial Vehicles) have many applications in military and commercial areas. The flight control system of UAVs is more important than manned aircraft's because the mission of UAVs must be operated without a human pilot. But very heavy and expensive navigation system makes it difficult to develop UAV flight control system. In this research, GPS/IMU integrated navigation filter was developed for light weight/low cost flight control system of small UAVs. With this navigation filter, full flight control system which has real time operating capability has been developed. The performance of the flight control system is basically checked by HILSIM (Hardware In the Loop SIMulation). Finally, the flight control system is verified by showing performance test result under real flight environment.

Scramjet Research at JAXA, Japan

  • Chinzei Nobuo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.1-1
    • /
    • 2005
  • Japan Aerospace Exploration Agency(JAXA) has been conducting research and development of the Scramjet engines and their derivative combined cycle engines as hypersonic propulsion system for space access. Its history will be introduced first, and its recent advances, focusing on the engine performance progress, will follow. Finally, future plans for a flight test of scramjet and ground test of combined cycle engine will be introduced. Two types of test facilities for testing those hypersonic engines. namely, the 'Ramjet Engine Test Facility (RJTF)' and the 'High Enthalpy Shock Tunnel (HIEST)' were designed and fabricated during 1988 through 1996. These facilities can test engines under simulated flight Mach numbers up to 8 for the former, whereas beyond 8 for the latter, respectively. Several types of hydrogen-fueled scramjet engines have been designed, fabricated and tested under flight conditions of Mach 4, 6 and 8 in the RJTF since 1996. Initial test results showed that the thrust was insufficient because of occurrence of flow separation caused by combustion in the engines. These difficulty was later eliminated by boundary-layer bleeding and staged fuel injection. Their results were compared with theory to quantify achieved engine performances. The performances with regards to combustion, net thrust are discussed. We have reached the stage where positive net thrust can be attained for all the test coditions. Results of these engine tests will be discussed. We are also intensively attempting the improvement of thrust performance at high speed condition of Mach 8 to 15 in High Enthalpy Shock Tunnel (HIEST). Critical issues for this purposemay be air/fuel mixing enhancement, and temperature control of combustion gas to avoid thermal dissociation. To overcome these issues we developed the Hypermixier engine which applies stream-wise vortices for mixing enhancement, and the M12-engines which optimizes combustor entrance temperature. Moreover, we are going to conduct the flight experiment of the Hypermixer engine by utilizing flight test infrastructure (HyShot) provided by the University of Queensland in fall of 2005 for comparison with the HIEST result. The plan of the flight experiment is also presented.

  • PDF

Attitude Controller Design and Test of Korea Space Launch Vehicle-I Upper Stage

  • Sun, Byung-Chan;Park, Yong-Kyu;Roh, Woong-Rae;Cho, Gwang-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.303-312
    • /
    • 2010
  • This paper introduces the upper stage attitude control system of KSLV-I, which is the first space launch vehicle in Korea. The KSLV-I upper stage attitude control system consists of two electro-hydraulic actuators and a reaction control system using cold nitrogen gas. A proportional, derivative, and integral controller is designed for the electro-hydraulic thrust vectoring system, and Schmidt trigger ON/OFF controllers are designed for the reaction control system. Each attitude controller is designed to have enough stability margins. The stability and performance of KSLV-I upper stage attitude control system is verified via hardware in the loop tests. Hardware in the loop tests are accomplished for perturbed flight conditions as well as nominal flight condition. The test results show that the attitude control loop of KSLV-I upper stage is very stable and the attitude controllers perform well for all flight conditions. Attitude controllers designed in this paper have been successfully applied to the first flight of KSLV-I on August 25, 2009. The flight test results show that all attitude controllers of the KSLV-I upper stage performed well and satisfied the accuracy specifications even during abnormal flight conditions.

ADAPT: A Predictive Cognitive Model of Piloting Skill (DAPT: 조종 기술의 예측적 인지 모델)

  • Sohn, Young-Woo;Kim, Kyung-Tae;Chang, Su-Wong;Kim, Do-Hyung
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.9-13
    • /
    • 2005
  • A comprehension-based computational model of pilot action planning called ADAPT is presented to model pilot performance in a flight simulation context. Individual pilots were asked to execute a series of flight maneuvers using a flight simulator, and their eye-scanning, control movements, and flight performance were recorded in a time-synched database. Computational models of each of the 25 individual pilots were constructed, and the individual models simulated execution of the same flight maneuvers performed by human pilots. The time-synched eye-scanning, control movements, and flight performance of individual pilots and their respective models were compared to test ADAPT's predictive validity.

  • PDF