• Title/Summary/Keyword: Flight Path

Search Result 248, Processing Time 0.023 seconds

Enhancing air traffic management efficiency through edge computing and image-aided navigation

  • Pradum Behl;S. Charulatha
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.33-53
    • /
    • 2024
  • This paper presents a comprehensive investigation into the optimization of Flight Management Systems (FMS) with a particular emphasis on data processing efficiency by conducting a comparative study with conventional methods to edge-computing technology. The objective of this research is twofold. Firstly, it evaluates the performance of FMS navigation systems using conventional and edge computing methodologies. Secondly, it aims to extend the boundaries of knowledge in edge-computing technology by conducting a rigorous analysis of terrain data and its implications on flight path optimization along with communication with ground stations. The study employs a combination of simulation-based experimentation and algorithmic computations. Through strategic intervals along the flight path, critical parameters such as distance, altitude profiles, and flight path angles are dynamically assessed. Additionally, edge computing techniques enhance data processing speeds, ensuring adaptability to various scenarios. This paper challenges existing paradigms in flight management and opens avenues for further research in integrating edge computing within aviation technology. The findings presented herein carry significant implications for the aviation industry, ranging from improved operational efficiency to heightened safety measures.

CFD-based Path Planning and Flight Safety Assessment for Drone Operation in Urban Areas (CFD를 이용한 도심내 드론 비행 경로 계획 및 안전성 평가)

  • Geon-Hong Kim;Ayoung Hwang;Hyoyeong Kim;Yeonmyeong Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.40-46
    • /
    • 2024
  • This study suggests a method to enhance drone flight path planning and safety evaluation in urban areas using Computational Fluid Dynamics (CFD). As the use of drones in urban environments has been growing rapidly, there is a lack of established methods for path planning and safety evaluation, which leads to a risky approach relying on experimental methods. Therefore, this research takes into account the intricate 3D fluid dynamics between drones and buildings by employing CFD to quantitatively plan flight paths and evaluate their safety. To accomplish this, the study focuses on Gimcheon Innovation City as the target area and collects relevant terrain and building data, and selects prospective flight routes. CFD analysis is then carried out to gather essential data for flight simulations and safety assessment. The safety assessments are conducted based on environmental fluid dynamics when the drone operates along the proposed flight paths

Detecting and Avoiding Dangerous Area for UAVs Using Public Big Data (공공 빅데이터를 이용한 UAV 위험구역검출 및 회피방법)

  • Park, Kyung Seok;Kim, Min Jun;Kim, Sung Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.6
    • /
    • pp.243-250
    • /
    • 2019
  • Because of a moving UAV has a lot of potential/kinetic energy, if the UAV falls to the ground, it may have a lot of impact. Because this can lead to human casualities, in this paper, the population density area on the UAV flight path is defined as a dangerous area. The conventional UAV path flight was a passive form in which a UAV moved in accordance with a path preset by a user before the flight. Some UAVs include safety features such as a obstacle avoidance system during flight. Still, it is difficult to respond to changes in the real-time flight environment. Using public Big Data for UAV path flight can improve response to real-time flight environment changes by enabling detection of dangerous areas and avoidance of the areas. Therefore, in this paper, we propose a method to detect and avoid dangerous areas for UAVs by utilizing the Big Data collected in real-time. If the routh is designated according to the destination by the proposed method, the dangerous area is determined in real-time and the flight is made to the optimal bypass path. In further research, we will study ways to increase the quality satisfaction of the images acquired by flying under the avoidance flight plan.

Guidance Law of Missiles for Control Impact-Time-and-Angle by Flight Path Angle in Three Dimensional Space (3차원 공간에서의 비행 경로각을 이용한 비행시간 및 충돌각 제어 유도법칙)

  • Jin, Sheng-Hao;Lee, Chun-Gi;Yang, Bin;Hwan, Chung-Won;Park, Seung-Yub
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • This paper on the assumption that the target is stationary and the velocity of missile is fixed value. In three dimensional space. Using flight path angle to simultaneous control impact-time-and-angle base on a homing guidance law. The independent variable in the nonlinear engagement model is the flight path angle of the missile. The propose homing guidance law can see the controllability of impact-time-and-angle. And also can see the processing of the missile arrive at the target. It is applied to several salvo attack scenarios. The performance of the proposed guidance law is verified by simulations.

Autonomous Aerobatic Flight for Fixed Wing Aircraft (고정익 항공기의 자율 곡예비행)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1217-1224
    • /
    • 2009
  • A simple and effective guidance and control scheme that enables autonomous three-dimensional path-following for a fixed wing aircraft is presented. The method utilizes the nonlinear path-following guidance law for the outer loop that creates steering acceleration command based on the desired flight path and the current position and velocity of the vehicle. The scheme considers the gravity in the guidance level, where it is subtracted from the acceleration command to form the specific force acceleration command which the aircraft is better suited to follow than the total acceleration command in the inner-loop. A roll attitude control scheme is also presented that enables inverted flight or sideslip maneuvers such as slow roll and knife-edge. A series of aerobatic maneuvers are demonstrated through simulations to show the potential of the proposed scheme.

Optimal Path Generation of Flight Motion Simulator for Hardware in the Loop Simulation (고기동 유도탄 HILS를 위한 비행자세모의기 최적 경로 산출)

  • Kim Ki Seung;Ra Won Sang
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.117-119
    • /
    • 2004
  • An optimal flight motion simulator path generation method is proposed for hardware in the loop simulation of high maneuverable missile. The proposed method consists of open loop and closed loop path calculation algorithm based on the energy optimal control strategies. The optimal angle command is able to protect the simulator from high acceleration shock at initial control phase.

  • PDF

Drone Flight Path for Countacting of Industry Disaster (산업 재해 대응 드론 비행경로 설정 방법)

  • Choo, Sang-Mok;Chong, Ui-Pil;Lee, Jung-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.132-137
    • /
    • 2017
  • Drone is currently used for wide application areas in our real life. Also it performs more important functions. We propose a method of drone operation system for the prevention of industrial disaster. In normal operation of drone system the drone monitors the industrial sites according to the planned flight path with acquiring the monitored images and send the image information to the server. The server analyzes and compares the images to DB information by calculating the similarity based on the threshold. Then the system decides whether the industrial sites has problems or not. If the abnormal condition is occurred, the drone change the flight path to abnormal flight path and keep monitoring the industrial sites with measuring the air status by sensors and sends all information to server system on the ground. If the emergency case is occurred, drone approaches the closest position of accident points and acquiring the all information and send them to server and 119 center.

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF

Collision-free local planner for unknown subterranean navigation

  • Jung, Sunggoo;Lee, Hanseob;Shim, David Hyunchul;Agha-mohammadi, Ali-akbar
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.580-593
    • /
    • 2021
  • When operating in confined spaces or near obstacles, collision-free path planning is an essential requirement for autonomous exploration in unknown environments. This study presents an autonomous exploration technique using a carefully designed collision-free local planner. Using LiDAR range measurements, a local end-point selection method is designed, and the path is generated from the current position to the selected end-point. The generated path showed the consistent collision-free path in real-time by adopting the Euclidean signed distance field-based grid-search method. The results consistently demonstrated the safety and reliability of the proposed path-planning method. Real-world experiments are conducted in three different mines, demonstrating successful autonomous exploration flights in environment with various structural conditions. The results showed the high capability of the proposed flight autonomy framework for lightweight aerial robot systems. In addition, our drone performed an autonomous mission in the tunnel circuit competition (Phase 1) of the DARPA Subterranean Challenge.

A study on the design of ALFLEX flight control system

  • Imado, Fumiaki;Yuasa, Eiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.219-222
    • /
    • 1996
  • Authors ahve developed ALFLEX simulation program which can implement the flight simulation ad control system design of ALFLEX efficiently by using aerodynamic data provided by NAL/NASDA. Then we have designed and example of flight path and altitude control system of ALFLEX. The philosophy of the design method is explained in detail, and a flight simulation result is shown, which verifies the fine performance of the system.

  • PDF