• Title/Summary/Keyword: Flight Operation

Search Result 656, Processing Time 0.024 seconds

A Study on the System Configuration and Communication Equipment Operation for Mission and Control of Small UAV (소형 무인항공기의 임무 및 제어를 위한 시스템 구성과 통신 장비 운용에 대한 연구)

  • Ha, Young-Seok
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.118-124
    • /
    • 2019
  • As Unmanned Aerial Vehicles technology has been widespread, various types of unmanned aircraft and mission equipment have been developed in line with mission diversification. Especially in Korea, small unmanned aerial vehicles have been actively developed. In addition, flight control system and mission equipment interface system for effective control of small unmanned aerial vehicles, efficient communication system configuration and operation for transmission to ground operated systems by processing data are required. This paper addresses efficient system structure and operation of communication equipment for missions and control of small unmanned aerial vehicles.

Observational Arc-Length Effect on Orbit Determination for KPLO Using a Sequential Estimation Technique

  • Kim, Young-Rok;Song, Young-Joo;Bae, Jonghee;Choi, Seok-Weon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-308
    • /
    • 2018
  • In this study, orbit determination (OD) simulation for the Korea Pathfinder Lunar Orbiter (KPLO) was accomplished for investigation of the observational arc-length effect using a sequential estimation algorithm. A lunar polar orbit located at 100 km altitude and $90^{\circ}$ inclination was mainly considered for the KPLO mission operation phase. For measurement simulation and OD for KPLO, the Analytical Graphics Inc. Systems Tool Kit 11 and Orbit Determination Tool Kit 6 software were utilized. Three deep-space ground stations, including two deep space network (DSN) antennas and the Korea Deep Space Antenna, were configured for the OD simulation. To investigate the arc-length effect on OD, 60-hr, 48-hr, 24-hr, and 12-hr tracking data were prepared. Position uncertainty by error covariance and orbit overlap precision were used for OD performance evaluation. Additionally, orbit prediction (OP) accuracy was also assessed by the position difference between the estimated and true orbits. Finally, we concluded that the 48-hr-based OD strategy is suitable for effective flight dynamics operation of KPLO. This work suggests a useful guideline for the OD strategy of KPLO mission planning and operation during the nominal lunar orbits phase.

Development of a Prediction Model and Correlation Analysis of Weather-induced Flight Delay at Jeju International Airport Using Machine Learning Techniques (머신러닝(Machine Learning) 기법을 활용한 제주국제공항의 운항 지연과의 상관관계 분석 및 지연 여부 예측모형 개발 - 기상을 중심으로 -)

  • Lee, Choongsub;Paing, Zin Min;Yeo, Hyemin;Kim, Dongsin;Baik, Hojong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.1-20
    • /
    • 2021
  • Due to the recent rapid increase in passenger and cargo air transport demand, the capacity of Jeju International Airport has been approaching its limit. Even though in COVID-19 crisis which has started from Nov 2019, Jeju International Airport still suffers from strong demand in terms of air passenger and cargo transportation. However, it is an undeniable fact that the delay has also increased in Jeju International Airport. In this study, we analyze the correlation between weather and delayed departure operation based on both datum collected from the historical airline operation information and aviation weather statistics of Jeju International Airport. Adopting machine learning techniques, we then analyze weather condition Jeju International Airport and construct a delay prediction model. The model presented in this study is expected to play a useful role to predict aircraft departure delay and contribute to enhance aircraft operation efficiency and punctuality in the Jeju International Airport.

Starting and Normal Operation Control Logic Research of Small Gas Turbine Engine (소형 가스터빈엔진의 시동 및 정상운용구간 제어로직 연구)

  • Lee, Kyungjae;Rhee, Dong-Ho;Kang, Young Seok;Kho, Seonghee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • As part of the commercialization research of small gas turbine engines, starting and normal operation control logic research of small gas turbine engine was conducted. It was investigated how the igniter, starting motor and fuel pump/valve are controlled during the ignition and normal operation process and it was applied to the prototype engine control unit(ECU) of the small gas turbine engine for commercialization research. Based on the ground test results, an ECU for flight test is being developed, and after completion of the development, an altitude test will be performed through an altitude test facility of Korea Aerospace Research Institute.

A Study on UAM Traffic Management System Development Trends and Concept Design (UAM 교통관제시스템 개발 동향 및 설계 개념 연구)

  • Changhwan Heo;Kwangchun Kang;Heungkuen Yoon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.81-90
    • /
    • 2023
  • In aviation, with the rapid transformation of the mobility industry, UAMs are emerging to operate green low-altitude airspace in urban environments. In order for UAM aircraft to fly safely transporting passengers and cargo in low-altitude urban airspace, a traffic control system that supports the safe operation of the aircraft is essential. In particular, traffic control systems that reflect the characteristics of the flight environment, such as operating at low altitude in urban environments for a short period of time, are required. In this study, we define the definition of UATM and its main services that perform traffic control for the safe operation of UAMs. In addition, we analyzed the development trends of UATM systems based on domestic and overseas cases. Based on these analyses, we present the results of the concept design of the UATM system. After analyzing UATM development cases, we found that there is no commercialized UATM system, but overseas development is focused on systems that can integrate ATM and UTM. And we identified key stakeholders and interface data, and performed UATM system architecture and functional design based on the identified data. Finally, as a necessary element for the future development of UATM systems, we propose the establishment and advancement of UAM traffic flow management systems, the establishment of integrated control systems, and the development of interface with aircraft operation systems in preparation for the unmanned UAM aircraft.

Analysis of Aircraft Noise at Gimpo International Airport according to Changes in International Flight Operations (국제선 운영변화에 따른 김포국제공항의 항공기 소음 분석)

  • Hyunsoo Cho;Jae Sik Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.4
    • /
    • pp.116-125
    • /
    • 2023
  • Gimpo International Airport is a strategically utilized airport based on government policy, but there are many residents living around the airport, so it is very sensitive to changes in airport operation. In the past, similar noise results were obtained for aircraft noise at Gimpo International Airport despite changes in aircraft types and an increase in the number of aircraft operating, and recently ICAO proposed a low-noise aircraft noise standard (Ch.14). Since the new standard has a noise reduction effect of up to 15dB compared to existing aircraft noise, ICAO and Europe EASA predict that future aircraft noise will be reduced if the latest technologies such as low-noise aircraft are applied. Therefore, this study establishes the aircraft operation performance and measured noise of Gimpo International Airport in 2022 as a baseline scenario, noise changes using various scenarios of introduction of low-noise aircraft, operation of mid-to-long-distance routes, and changes in future air traffic demand were analyzed using simulation.

The Development Trend of a VTOL MAV with a Ducted Propellant (덕티드 추진체를 사용한 수직 이·착륙 초소형 무인 항공기 개발 동향)

  • Kim, JinWan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • This purpose of this paper was to review the development trend of the VTOL MAVs with a ducted propellant that can fly like the VTOL at intermediate and high speeds, hovering, landing, and lifting off vertically over urban areas, warships, bridges, and mountainous terrains. The MAV differs in flight characteristics from helicopters and fixed wings in many respects. In addition to enhancing thrust, the duct protects personnel from accidental contact with the spinning rotor. The purpose of the U.S. Army FCS and DARPA's OAV program is spurring development of a the VTOL ducted MAV. Today's MAVs are equipped with video/infrared cameras to hover-and-stare at enemies hidden behind forests and hills for approximately one hour surveillance and reconnaissance. Class-I is a VTOL ducted MAV developed in size and weight that individual soldiers can store in their backpacks. Class-II is the development of an organic VTOL ducted fan MAV with twice the operating time and a wider range of flight than Class-I. MAVs will need to develop to perch-and-stare technology for lengthy operation on the current hover-and-stare. The near future OAV's concept is to expand its mission capability and efficiency with a joint operation that automatically lifts-off, lands, refuels, and recharges on the vehicle's landing pad while the manned-unmanned ground vehicle is in operation. A ducted MAV needs the development of highly accurate relative position technology using low cost and small GPS for automatic lift-off and landing on the landing pad. There is also a need to develop a common command and control architecture that enables the cooperative operation of organisms between a VTOL ducted MAV and a manned-unmanned ground vehicle.

Development of the Technology Transfer System In Reservoir operation

  • ITO Kazumasa;IMANISHI Yumi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.44-51
    • /
    • 2005
  • Water flow in rivers during flood season can be 10 to 100 fold higher than normal seasons (low precipitation) in Japan and predicting flood runoff is essential for operating reservoirs with discharging gates. Abundant experiences and knowledge are requisites for operators to be able to make efficient decisions at work. This research investigated a method to transfer technical knowledge by acquiring skills and knowledge from actual dam operators and by using the information to construct an educational training system. The purpose of the research was to enable the execution of a secure and rational reservoir operation during flood period. The educational training system for reservoir operation was developed with the focuses on acquiring knowledge on hydraulics and hydrology and learning about decision making related to the reservoir operation as well as the timing of control. The system is capable of conducting education that corresponds to individual levels in each location. Of the educational training methods, a lecture method that uses textbooks is effective for the understanding of basic knowledge and concepts while a training method that uses a simulation device is essential for the practice of advanced and specialized procedures in specific fields. Simulation devices are used in operational training for airplane flight and driving cars and trains. The educational system presented here was designed to provide further assistance to those who have acquired basic knowledge and concepts through textbooks and also to at low them to perform the satisfactory operation of dam equipment. Our research proposes a method which can realize a system to acquire technical skills-the skills which are the foundation of technical knowledge and operation.

  • PDF

Flight Safety Assurance Technology for Rotary Aircraft through Optimization of HUMS Vibration Thresholds (회전익항공기 상태감시시스템 임계값 최적화를 통한 비행안전성 확보기술)

  • Jun, Byung-kyu;Jeong, Sang-gyu;Kim, Young-mok;Chang, In-ki
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.446-452
    • /
    • 2016
  • The aircraft has to be considered for safety very importantly because of peculiarity of flight in the air, so it should be retained through proper inspection and maintenance not only in production phase but also in operating phase. Recently, it is using the latest technology as engineering approach not depending on human factor to determine on maintenance needs, and domestic production rotary aircraft also has the health & usage monitoring system to measure and to monitor major components. However, continued vibration exceedance phenomenon occurred in production and operation phase because of inappropriate thresholds, and it confirmed as false alarm which is not necessary to repair. In this paper, it is described that operational concept of HUMS, and especially it contains a study result for efficiency of aircraft operation and ultimately the improvement of flight safety by optimizing HUMS thresholds to determine efficiently necessity of maintenance under limited conditions and by establishing inspection/maintenance procedures when the re-designated thresholds exceedance occurred.

A Study of Flare Operation Method for The Fighter with An External Center Fuel Tank (동체 중앙에 연료탱크를 장착한 전투기의 섬광탄 운용 방안 연구)

  • Kang, Chi-Hang;Jang, Young-Il;Kwon, Ky-Beom;Yoon, Young-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.616-622
    • /
    • 2012
  • In this paper, we examined the problems of the flare operation of tactic maneuvering flight of fighter aircraft with 150GL center external fuel tank and proposed the possible solution of it's operation. The damage scope of horizontal fin of fuel tank and flare trajectory when the flare ejected from the maneuvering aircraft were analyzed by the wind tunnel test and the numerical analysis. We investigated the two different option to avoid the damage of fin; i) the adjustment of flare dispenser angle and ii) the change of horizontal fin's shape. For the considering of practical operation of present system, we chose the second option. We estimated the drop safety of external fuel tank with redesigned fin by the wind tunnel experiments.