• Title/Summary/Keyword: Flexure element

Search Result 161, Processing Time 0.021 seconds

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars

  • Yoo, Doo-Yeol;Banthia, Nemkumar
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.759-774
    • /
    • 2015
  • This study simulates the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams reinforced with steel and glass fiber-reinforced polymer (GFRP) rebars. For this, micromechanics-based modeling was first carried out on the basis of single fiber pullout models considering inclination angle. Two different tension-softening curves (TSCs) with the assumptions of 2-dimensional (2-D) and 3-dimensional (3-D) random fiber orientations were obtained from the micromechanics-based modeling, and linear elastic compressive and tensile models before the occurrence of cracks were obtained from the mechanical tests and rule of mixture. Finite element analysis incorporating smeared crack model was used due to the multiple cracking behaviors of structural UHPFRC beams, and the characteristic length of two times the element width (or two times the average crack spacing at the peak load) was suggested as a result of parametric study. Analytical results showed that the assumption of 2-D random fiber orientation is appropriate to a non-reinforced UHPFRC beam, whereas the assumption of 3-D random fiber orientation is suitable for UHPFRC beams reinforced with steel and GFRP rebars due to disorder of fiber alignment from the internal reinforcements. The micromechanics-based finite element analysis also well predicted the serviceability deflections of UHPFRC beams with GFRP rebars and hybrid reinforcements.

Effective Stress Modeling of Membranes Made of Gold and Aluminum Materials Used in Radio-Frequency Microelectromechanical System Switches

  • Singh, Tejinder
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.172-176
    • /
    • 2013
  • Microelectromechanical system switches are becoming more and more popular in the electronics industry; there is a need for careful selection of the materials in the design and fabrication of switches for reliability and performance issues. The membrane used for actuation to change the state of an RF switch is made mostly using gold or aluminum. Various designs of membranes have been proposed. Due to the flexure-type structures, the design complexity increases, which makes stress analysis mandatory to validate the reliability and performance of a switch. In this paper, the effective stress and actuation voltage required for different types of fixed-fixed membranes is analyzed using finite element modeling. Effective measures are presented to reduce the stress and voltage.

Ductility enhancement of reinforced concrete thin walls

  • Kim, Jang Hoon
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.111-123
    • /
    • 2005
  • The ductility of reinforced concrete bearing walls subjected to high axial loading and moment can be enhanced by improving the deformability of the compression zone or by reducing the neutral axis depth. The current state-of-the-art procedure evaluating the confinement effect prompts a consideration of the spaces between the transverse and longitudinal reinforcing bars, and a provision of tie bars. At the same time, consideration must also be given to the thickness of the walls. However, such considerations indicate that the confinement effect cannot be expected with the current practice of detailing wall ends in Korea. As an alternative, a comprehensive method for dimensioning boundary elements is proposed so that the entire section of a boundary element can stay within the compression zone when the full flexural strength of the wall is developed. In this comprehensive method, the once predominant code approach for determining the compression zone has been advanced by considering the rectangular stress block parameters varying with the extreme compression fiber strain. Moreover, the size of boundary elements can also be determined in relation to the architectural requirement.

Derivation of Plate Separation Criteria for Reinforced Concrete Members Strengthened with Steel Plates (강판으로 보강된 철근콘크리트 부재의 박리기준 유도)

  • 오병환;박대균;조재열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.745-750
    • /
    • 2000
  • Steel plate bonding technique is most widely used in strengthening of existing concrete structures, but it has inherently a problem of the premature failure such as interface separation and rip off. So far, many studies have been arid out in the manner of laboratory tests for the reinforced concrete beams to find out he mechanism of the premature failure. However, in order to verify the characteristics of the premature failure, more reasonable local investigations are needed rather than such relatively global experimental works. In this study, therefore, the double lap test which simulate the pure shear loadings and the half beam tests which consider combined flexure-shear force have been done. There are, however, difficulties in getting the normal stress caused to premature failure, so that finite element analysis was performed, too. In numerical study, material nonlinearity was considered, and the interface element was applied to model the interface between steel plate and adhesive. From the results of experimental and numerical studies, a realistic failure criterion on the separation of steel plates has been derived.

  • PDF

Development of High Precision Actuator for Micro Press System by Inchworm Motor (인치웜모터를 이용한 마이크로 프레스용 고정밀 구동기의 개발)

  • Choi, Jong-Pil;Nam, Kwang-Sun;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.137-143
    • /
    • 2009
  • This paper presents the fabrication of inchworm motor for high precision actuator system of large displacement and high force. The inchworm motor consists of a extend actuator that provides displacement of tool guide and two clamping actuators which provide the holding force. In order to avoid the PZT fracture, design of pre-load housing was conducted by flexure hinge structure, because PZT actuator has low tensile and shear. To design the pre-load housing and optimize the clamping mechanism, the static and dynamic analysis were conducted by finite element method. From these results, a prototype of the inchworm motor was fabricated and dynamic characteristic with respect to the various frequency was tested. The maximum velocity of the inchworm motor was $41.1{\mu}m/s$ at 16Hz.

Flexural strength of concrete-galvalume composite beam under elevated temperatures

  • Maryoto, Agus;Lie, Han Ay;Jonkers, Hendrik Marius
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • In this paper, the elevated temperature on a concrete-galvalume composite beam's flexural strength based on the numerical and experimental methods is investigated. The strategy is to perform modeling and simulation of the flexural test based on finite element method (FEM) at room temperature and validate its results to experimental data at the same temperature. When the numerical model was proven valid, the model was utilized to simulate the effect of elevated temperatures on the composite element. The study concludes that the flexural strength of the beam decreases at higher temperature. Additionally, it was shown that cracking moments is susceptible to temperature fluctuation and the failure modes are sensitive concerning the elevated temperature.

p-Version Finite Element Model of Cracked Plates Including Shear Deformation under Flexural Behavior (휨거동을 받는 균열판의 전단변형을 고려한 p-Version 유한요소모델)

  • Lee, C.G.;K.S.Woo;Shin, Y.S.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.16-23
    • /
    • 1993
  • The new p-version crack model is proposed to estimate the bending stress intensity factors of the thick cracked plate under flexure. The proposed model is based on high order theory and $C^{\circ}$-plate element including shear deformation. The displacements fields are defined by integrals of Legerdre polynomials which can be classified into three groups such as basic mode, side mode and internal mode. The computer implementation allows arbitrary variations of p-level up to a maximum value of 10. The bending stress intensity factors are computed by virtual crack extention approach. The effects of ratios of thickness to crack length(h/a), crack length to width(a/W) and boundary conditions are investigated. Very good agreement with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

The Development of Confocal Microscopy Using the Amplified Double-compound Flexure Guide (레버 증폭 구조의 플렉서를 이용한 공초점 현미경의 개발)

  • Lee, Sang-Won;Kim, Wi-Han;Jung, Young-Dae;Park, Min-Kyu;Kim, Jee-Hyun;Lee, Sang-In;Lee, Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A confocal microscope was developed utilizing a scanning sample stage based on a home-built double-compound flexure guide. A scanning sample stage with nano-scale resolution consisted of a double leaf spring based flexure, a displacement amplifying lever, a Piezo-electric Transducer(PZT) actuator and capacitance sensors. The performance of the two-axis stage was analyzed using a commercial finite element method program prior to the implementation. A single line laser was employed as the light source along with the Photo Multiplier Tube(PMT) that served as the detector. The performance of the developed confocal microscope was evaluated with a mouse ear skin imaging test. The designed scanning stage enabled us to build the confocal microscope without the two optical scanning mirror modules that are essential in the conventional laser scanning confocal microscope. The elimination of the scanning mirror modules makes the optical design of the confocal microscope simpler and more compact than the conventional system.

Girder distribution factors for steel bridges subjected to permit truck or super load

  • Tabsh, Sami W.;Mitchell, Muna M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.237-249
    • /
    • 2016
  • There are constraints on truck weight, axle configurations and size imposed by departments of transportation around the globe due to structural capacity limitations of highway pavements and bridges. In spite of that, freight movers demand some vehicles that surpass the maximum size and legal weight limits to use the transportation network. Oversized trucks serve the purpose of spreading the load on the bridge; thus, reducing the load effect on the superstructure. For such vehicles, often a quick structural analysis of the existing bridges along the traveled route is needed to ensure that the structural capacity is not exceeded. For a wide vehicle having wheel gage larger than the standard 1830 mm, the girder distribution factors in the design specifications cannot be directly used to estimate the live load in the supporting girders. In this study, a simple approach that is based on finite element analysis is developed by modifying the AASHTO LRFD's girder distribution factors for slab-on-steel-girder bridges to overcome this problem. The proposed factors allow for determining the oversized vehicle bending moment and shear force effect in the individual girders as a function of the gage width characteristics. Findings of the study showed that the relationship between the girder distribution factor and gage width is more nonlinear in shear than in flexure. The proposed factors yield reasonable results compared with the finite element analysis with adequate level of conservatism.