• Title/Summary/Keyword: Flexural toughness test

Search Result 115, Processing Time 0.026 seconds

Evaluation of fracture reduction performance of fiber reinforced mortar according to fiber type (섬유종류에 따른 섬유보강 모르타르의 파괴저감성능 평가)

  • Roh, Jong-Chan;Kim, Gyu-Yong;Kim, Hong-Seop;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jae-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.38-39
    • /
    • 2013
  • In this study, in regard to fiber reinforced mortar mixing steel fiber and 4types of organic fiber, impact test was carried out. Because to predict fracture reduction performance with flexural, tensile strength when types of fiber were different as impact reduction performance of concrete is closely related with toughness such as flexural strength, tensile strength and fracture energy etc. As a result, enhancement of toughness by fiber reinforcement controls the spall of rear. On the other hand in case of steel fiber relatively turned up high toughness in appropriate load compared with organic fiber but in same mixing rate, impact reduction performance by projectile showed low performance due to few number of an individual of mixing.

  • PDF

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

The relationship between reinforcing index and flexural parameters of new hybrid fiber reinforced slab

  • Cao, Mingli;Xie, Chaopeng;Li, Li;Khan, Mehran
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.481-492
    • /
    • 2018
  • In this paper, a new hybrid fiber system (NHFS) is investigated for the application of slab. The steel fiber, polyvinyl alcohol (PVA) fiber and calcium carbonate ($CaCO_3$) whisker is added to form NHFS. The four-point bending test is carried out on the flexural properties of slab with plain, steel fiber, traditional hybrid fiber system (THFS) and NHFS reinforced cementitious composites. The flexural behavior is evaluated by ASTM C1018-97, JCI-SF4 and post-crack strength (PCS) technique. The evaluation parameters of flexural toughness such as toughness index (TI), equivalent flexural strength (EFS) and PCS are determined. The size of slab specimens is $15mm(thickness){\times}50mm(width){\times}200mm(length)$. The results show that adding $CaCO_3$ whisker to THFS can significantly improve the flexural strength, TI, EFS, PCS of the slab. The empirical relation between reinforcing index ($RI_v$) and flexural parameters show that flexural parameters of slabs increase first and then decrease; which indicates that optimum $RI_v$ values can be helpful in the considering the mix design of steel-PVA fibers-$CaCO_3$ whisker composites for achieving the desired flexural-related properties. The scanning electron microscopy is performed to observe the micro-morphological characteristics of the fracture surface, which proved the positive hybrid effect among the different fibers in cementitious composites. The NHFS can arrest the generation and propagation of the crack from micro to macro level.

Quality Evaluation of shotcrete due to Properties of Steel Fiber (강섬유 특성이 숏크리트 품질에 미치는 영향)

  • Ryu, Jong-Hyun;Kim, Dong-Weon;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.673-676
    • /
    • 2006
  • Steel FibreReinforced Shotcrete(SFRS) is one of the main tunnel support along with the rock bolt during the excavation and after the completion of the tunnel. In the standard qualification of the SFRS defined by Korea Highway Corporation, 28 day core specimen has to meet the compressive strength of 19.6 MPa and over 90 % fibre contents. Furthermore, for the 28 days brick shaped specimen made by shooting, flexural strength should be over 4.4 MPa and flexural toughness ratio which can be calculated from flexural toughness factor has to meet more than 68% of flexural strength. In shotcrete, accelerating agent is added for the rapid strength development. Silicate and aluminate type agents are known to develop shotcrete strength rapidly, however, has such problem to degrade the middle and long term strength. Hence, using poly carboxylic super plasticizer, it was aimed to enhance the quality of the shotcrete with the lower water-cement ratio and the same level of workability. The present paper shows the part of the field test result and its analysis.

  • PDF

Improving the flexural toughness behavior of R.C beams using micro/nano silica and steel fibers

  • Eisa, Ahmed S.;Shehab, Hamdy K.;El-Awady, Kareem A.;Nawar, Mahmoud T.
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.45-58
    • /
    • 2021
  • Experimental investigation has been conducted to study the effect of using Micro/Nano Silica in presence of steel fibers on improving the static response of reinforced concrete beams. Twenty-one mixtures were prepared with micro silica (MS), Nano silica (NS) and steel fibers (SFs) at different percentages. Cement was replaced by 10% and 15% of Micro silica and 1%, 2% and 3% of Nano silica in the presence of steel fibers at different volume fractions 0%, 1%, and 2%. 258 concrete samples, (126 cubes, 63 cylinders, 63 prisms, and six R.C beams), were investigated experimentally in two stages. The first stage was to investigate the mechanical properties of the prepared mixtures. The second stage was to study the static behavior of R.C beams, using the designed concrete mixtures, under a four-point flexural test. The results showed that replacing cement by (10% MS and 1% NS) produces the optimum mix with a significant improvement in the mechanical properties and the response of R.C beams under static loads. In addition, incorporating steel fibers at different volume fractions have a considerable effect on the flexural toughness of concrete mixes.

Study on flexural toughness and flexural tensile strength of fiber reinforced concrete by mixture ratio of different fibers (이종 섬유 혼입비에 따른 섬유보강 콘크리트의 휨 인성 및 휨 인장강도에 관한 연구)

  • Park, Hong-Yong;Ryu, Jong-Hyun;Jo, Yong-Bum
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • Recently, a new type of polyolefin fiber having a good mechanical properties is being developed, and it is necessary to examine a possibility for the new fiber together to be used as a reinforcing fiber with other types of fiber or by itself. The objective of this study is to find flexural toughness and tensile strength of concrete reinforced with steel and polyolefin fibers. Four point beam tests were performed with 324 specimens following two standard tests methods: KS F 2566 and ASTM C 1399-02. From the test results, the effects of volume fraction of fibers, and aspect ratio of steel fiber on the toughness and tensile strength were investigated, and the optimal ratio of steel fiber to polyolefin fiber was suggested.

Effects of Specialty Cellulose Fibers on Improvement of Flexural Performance and Control of Cracking of Concrete (콘크리트의 휨성능 증진 및 균열제어에 대한 특수 가공된 셀룰로오스섬유의 효과)

  • 원종필;박찬기
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.89-98
    • /
    • 2000
  • The mechanical properties of specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to drying shrinkage crack reduction potential of concrete and theirs evaluation are presented in this paper. The effects of differing fiber volume fraction(0.03%, 0.06%, 0.08%, 0.1%, 0.15%, 0.2%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Flexural performance(flexural strength and flexural toughness) test results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural performance of normal- and high- strength concrete(as compared to plain and polypropylene fiber reinforced concrete). Optimum specialty cellulose fiber reinforced concrete were obtianed using 0.08% fiber volume fraction. Drying shrinkage cracking test results confirmed specialty cellulose fibers are effective in reducing the drying shrinkage cracking of normal and high-strength concrete(as compared to popylene fiber reinforced concrete).

Mechanical Behavior and Fracture Resistance of $SCS6/Si_3N_4$ CFCCs ($SCS6/Si_3N_4$ 연속섬유강화 세라믹 복합재료의 기계적 거동 및 파괴저항평가)

  • Yoon, Yu-Sung;Kwon, Oh-Heon;Jenkins, Michael G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.658-662
    • /
    • 2001
  • Continuous fiber ceramic composites(CPCCs) having the advantages of ceramics resistance to heat, eroson can be applied in chemical reactors and engine. CFCCs has relatively high stiffness in spite of low weight. In particular, it exhibits greatly increased toughness, which serves to decrease its inherent damage characteristics of the brittle nature of monolithic ceramics. In this wort, tensile and flexural test for SCS6 fiber/ $Si_3N_4$ matrix composites were studied. An objective of this study is to obtain the basic quantities of mechanical properties for tension and flexural test and link these to the fracture resistance behavior. Then, we showed that wok of fracture concept was useful as a method for describing fracture restance behavior of CFCCs.

  • PDF

Workability and Mechanical Properties of Hybrid Fiber Reinforced Concrete Using Amorphous Steel Fiber and Polyamide Fiber

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Kim, Yo-Seb;Jun, Jin;Kim, Wha-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.470-476
    • /
    • 2016
  • Many studies have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Studies on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber, however, yet remain to be done. The purpose of this experimental research is to evaluate the workability and mechanical properties of hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber. For this purpose, the hybrid fiber reinforced concrete containing amorphous steel fiber(ASF) and polyamide fiber(PAF) were made according to their total volume fraction of 0.5 % for water-binder ratio of 33 %, and then the mechanical properties such as the compressive strength, direct tensile strength, flexural strength, and flexural toughness of those were estimated. It was observed from the test results that the compressive strength was slightly decreased with increasing ASF and decreasing PAF and the effect of fiber combination on the flexural strength was not much but the flexural toughness was relatively largely increased with decreasing ASF and increasing PAF.

Flexural Behavior of Reinforced Concrete Beam with Hybrid FRP Rods (Hybrid FRP Rod로 보강된 철근콘크리트 보의 휨 거동)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Yang, Dong-Oun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.327-330
    • /
    • 2005
  • In this study, the nature of brittleness, one of the main problems of GFRP(Glass Fiber Reinforced Plastic) Re-bar, is improved. Therefore, Hybrid GFRP Rod is developed by attaching FBG sensor to the new GFRP Rod with toughness, essential for flexural reinforcement of the concrete. The test was performed with specimens of Hybrid GFRP Rod. According to the test, data measured by electric gauge sensor are compared with data measured by FBG sensor.

  • PDF