• Title/Summary/Keyword: Flexural behavior of RC beam

Search Result 192, Processing Time 0.025 seconds

Nonlinear Flexural Analysis of RC Beam Rehabilitated by Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트로 보강된 RC보의 비선형 휨해석)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Yong-Bin;Kang, Mun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4635-4642
    • /
    • 2010
  • Latex modification of concrete provides the material with higher flexural strength, as well as high bond strength and reduced water permeability. One of the most advantages of the very early-strength latex-modified concrete (VES-LMC) could be the similar contraction and expansion behaviour to normal concrete substrate, which enable to ensure long-term performance. The purpose of this study was to parametric nonlinear flexural nonlinear analysis of RC beam rehabilitated by VES-LMC. The results were as follows; The flexural nonlinear analysis model of RC beam overlaid by VES-LMC in ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The proposed FE analysis model was verified by comparison of an experimental data and the FE analysis results. The FE analysis results showed that yield point as well as flexural stiffness increased as the depth increased; the stiffness of beam overall increased as the bond stiffness became larger; the bond strength between two different materials is a key factor in composite beam. A parametric study showed that an overlay thickness was a main influencing factor to the behavior of RC beam overlaid by VES-LMC.

Experimental Study of Flexural Behavior of Reinforced Concrete Beams with Different Types of Coarse Aggregates (순환골재 치환률에 따른 철근콘크리트 보의 휨거동에 관한 실험적 연구)

  • Lee, Young-Oh;Jeon, Esther;Yun, Hyun-Do;You, Young-Chan;Kim, Keung-Hwan;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.45-48
    • /
    • 2006
  • This study is to evaluate flexural behavior of RC beam with different types of coarse aggregates, so called natural or recycled aggregate. Two reinforced concrete beams were manufactured with different replacement level of recycled coarse aggregates : Concrete made with 0% of coarse aggregates, concrete made with 100% of recycled coarse aggregates. From the test, the general flexural performances of RC beams with different types of coarse aggregates such as cracking moment, crack patterns, maximum moment/crack width are discussed.

  • PDF

Retrofitting of shear damaged RC beams using CFRP strips

  • Altin, Sinan;Anil, Ozgur;Toptas, Tolga;Kara, M. Emin
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.207-223
    • /
    • 2011
  • The results of an experimental investigation are presented in this paper for retrofitting of shear damaged reinforced concrete beams by using U shaped CFRP strips. The experimental program is consisted of seven shear deficient T cross sectioned 1/2 scale simply supported beam specimens. One beam was used as reference specimen, and the remaining six specimens were tested in two stages. At the first stage, specimens were shear damaged severely, and then were retrofitted by using CFRP strips with or without fan type anchorages. Finally, retrofitted beams were tested up to failure. Three different CFRP strip spacing were used such as 125 mm, 150 mm, and 200 mm. The effect of anchorages on shear strength and behavior of the retrofitted specimens is investigated. CFRP strips without anchorages improved the shear strength, but no flexural failure mode was observed. Specimens showed brittle shear failure due to peeling of CFRP strip from RC beam surface. Shear damaged specimens retrofitted with anchoraged CFRP strips showed improved shear strength and ductile flexural failure. Maximum strains at anchoraged strips were approximately 68% larger than that of strips without anchorages.

Bond and Flexural Behavior of RC Beams Strengthened Using Ductile PET (고연성 PET 섬유로 보강된 철근콘크리트 보의 부착 및 휨 거동)

  • Park, Hye-Sun;Kim, So-Young;Lim, Myung-Kwan;Choi, Donguk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.30-39
    • /
    • 2016
  • An experimental study was performed to investigate flexural performance and bond characteristics of RC beams strengthened using ductile polyethylene terephthalate(PET) with low elastic modulus. Bond tests were planned and completed following CSA S806. Test variables were fiber type and fiber amount. Also, total of 8 RC beams was tested. Major test variables of the beam tests included section ductility(${\mu}=3.4$, 7.0), fiber type(CF, GF, PET) and amount of fiber strengthening. Moment-curvature analyses of the beam sections were also performed. In bond tests, the bond stress distribution as well as the maximum bond stress increased with increasing amount of PET. In case of 10 layers of PET, the effective bond length was 60 mm with the maximum and the average bond stress of 2.33 and 2.10 MPa, respectively. RC beam test results revealed that the moment capacity of the RC beams strengthened using PET 10 and 20 layers increased over the control beam with little reduction in ductility by fiber strengthening. All beams strengthened using PET resulted in ductile flexural failure without any sign of fiber debonding or fiber rupture. It was important to include the mechanical properties of adhesive in the moment-curvature analysis of PET-strengthened beam sections.

Flexural Characteristics of the Overlayed RC Beam Strengthened with Rebars, CFRP, and Steel Plate.

  • 오홍섭;심종성;이차돈;최완철;신영수;홍기섭;홍영균
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.221-229
    • /
    • 1996
  • An analytical method based on the nonlinear layered finite element method is used to simulate the load-deflection behavior of strengthened beam. Beams considered in this study are the ones strengthened either with external steel plate or Carbon Fiber Reinforced Plastic (CFRP) sheets bonded to the overlay soffit or with reinforcing rebars in the overlay. The theoretically obtained load-deflections and strains of the strengthened beam are compared to the corresponding experimental values. Comparing the approximate measures on the cumulative slips, efficiencies of the repairing techniques are evaluated. Parametric studies are, then, peformed using the developed model to investigate the effects of design variables on the overal flexural behavior of the strengthened beam. Simply supported beams under monotonically increasing symmetrical loads are considered exclusively.

  • PDF

Flexural behavior of reinforced concrete beams strengthened with an ultra-high performance concrete panel of various thicknesses

  • Seonhyeok Kim;Taegeon Kil;Sangmin Shin;Daeik Jang;H.N. Yoon;Jin-Ho Bae;Joonho Seo;Beomjoo Yang
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.487-498
    • /
    • 2023
  • The present study investigated the flexural behavior of reinforced concrete (RC) beams strengthened with an ultrahigh performance concrete (UHPC) panel having various thicknesses. Two fabrication methods were introduced in this study; one was the direct casting of UHPC onto the bottom surface of the RC beams (I-series), and the other was the attachment of a prefabricated UHPC panel using an adhesive (E-series). UHPC panels having thicknesses of 10, 30, 50, and 70 mm were applied to RC beams, and these specimens were subjected to four-point loading to assess the effect of the UHPC thickness on the flexural strengthening of RC beams. The test results indicated that the peak strength and initial stiffness were vastly enhanced with an increase in the thickness of the UHPC panel, showing an improved energy dissipation capacity. In particular, the peak strength of the E-series specimens was higher than that of I-series specimens, showing high compatibility between the RC beam and the UHPC panel. The experimental test results were comparatively explored with a discussion of numerical analysis. Numerical analysis results showed that the predictions are in fair agreement with experimental results.

Flexural Capacity of the Composite Beam using Angle as a Shear Connector (앵글을 전단연결재로 사용하는 합성보의 휨성능)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Choi, Jong Gwon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.63-75
    • /
    • 2015
  • In this study, Composite beam flexural capacity was investigated experimentally using angle as a shear connector. The main experimental parameters are the size and the spacing of the angle and the overall behavior of before and after composite. Also, the composite beam bending performance when it used with hollow PC slab and the general RC slab was compared. When determining that it synthetically, the flexural capacity of the composite beam with angle shear connector estimated 25% to 55% more strength than the nominal strength. Effects of strength parameters of composite beam by angles shear connector are size and spacing of the angle. As expected, the larger and the narrower spacing of the angles, the more strength the composite beam have. In addition, the performance of the composite beam with a hollow slab was well demonstrated by the test.

Behavior and modeling of RC beams strengthened with NSM-steel technique

  • Md. Akter Hosen;Khalid Ahmed Al Kaaf;A.B.M. Saiful Islam;Mohd Zamin Jumaat;Zaheer Abbas Kazmi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.67-81
    • /
    • 2023
  • The reinforced concrete (RC) structures might need strengthening or upgradation due to adverse environmental conditions, design defects, modification requirements, and to prolong the expected lifespan. The RC beams have been efficiently strengthened using the near surface mounted (NSM) approach over the externally bonded reinforcing (EBR) system. In this study, the performance of RC beam elements strengthened with NSM-steel rebars was investigated using an experimental program and nonlinear finite element modeling (FEM). Nine medium-sized, rectangular cross-section RC beams total in number made up for the experimental evaluation. The beams strengthened with varying percentages of NSM reinforcement, and the number of grooves was assessed in four-point bending experiments up to failure. Based on the experimental evaluation, the load-displacement response, crack features, and failure modes of the strengthened beams were recorded and considered. According to the experimental findings, NSM steel greatly improved the flexural strength (up to about 84%) and stiffness of RC beams. The flexural response of the tested beams was simulated using a 3D non-linear finite element (FE) model. The findings of the experiments and the numerical analysis showed good agreement. The effect of the NSM groove and reinforcement on the structural response was then assessed parametrically.

Strengthening performance of RC beams strengthened by bonded or unbonded prestressed CFRP laminates (부착 또는 비부착된 탄소판으로 긴장 보강한 RC보의 보강성능)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun;Jung, Woo-Tai;Kang, Jae-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.279-282
    • /
    • 2005
  • This study investigates the flexural behavior and strengthening performance of RC beams strengthened by prestressed CFRP laminates through static bending tests. Tests on RC beams strengthened with prestressed CFRP laminates were carried out for both cases where the CFRP laminates were bonded or not and the corresponding effects on the strengthening performances of RC beams were examined. Experimental results revealed that RC beams strengthened with prestressed CFRP laminates presented increased crack load and yield load according to the level of prestress. Premature debonding occurred before the RC beam strengthened with bonded prestressed CFRP laminates reaches the maximum load, and the specimen presented similar behavior to the one exhibited by the specimen with unbonded laminates.

  • PDF

Flexural Behavior of RC Beams Strengthened with Steel Plates/Carbon Fiber Sheets(CFS) under Pre-Loading Conditions

  • Shin, Yeong-Soo;Hong, Geon-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • The reinforced concrete(RC) flexural members strengthened with steel plate/CFS at soffit have initial stresses and strains in reinforcements and concrete caused by the service loads at the time of retrofitting works. These initial residual stresses and strains of strengthened beams may affect the flexural performance of the rehabilitated beams. The objective of this study is to evaluate and verify the effectiveness of rehabilitation by external bonded steel plates and CFS to the tension face of the beams under three conditions of pre-loading. Thirteen beam specimens are tested and analyzed. Main test parameters are pre-loading conditions, strengthening materials and reinforcement ratio of specimens. The effect of test parameters on the strengthened beams is analyzed from the maximum load capacity, load-deflection relationship, state of stress of the materials. crack propagation phase, and failure modes. Both test results and design formulas of ACI Code provisions are compared and evaluated.

  • PDF