• Title/Summary/Keyword: Flexural Reinforcement Ratio

Search Result 281, Processing Time 0.034 seconds

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.

The Flexural Capacity of the U-flanged Truss Hybrid Beam considering the Tensile Force of Lattice Members (래티스재의 인장력을 고려한 U-플랜지 트러스 복합보의 휨 내력에 관한 연구)

  • Lee, Seong Min;Oh, Myoung Ho;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.53-60
    • /
    • 2023
  • A bending experiment was conducted to verify the structural performance of the U-flange truss hybrid bean using rebars or steel pipes to reinforce the upper compression zone. As a result of evaluating the bending strength of the truss hybrid beam according to the Structural Design Standard (KDS 14 2020: 2022) by introducing the lattice member as a tensile resistance element, the following conclusions were obtained. Considering the lattice element as a tensile resistance element, the nominal bending strength was increased by 38.57 to 47.90 kN.m. As a result of reviewing the experiment as to whether the flexural member has proper ductility, it was found that it is desirable to place appropriate rebars, steel quality plans, and lateral restraints on the upper and lower parts of the hybrid beam to have sufficient ductility ratio.

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete (강섬유로 보강된 초고성능 콘크리트의 휨 거동에 대한 실험 연구)

  • Yang, In-Hwan;Joh, Chang-Bin;Kang, Su-Tae;Kim, Byung-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.737-744
    • /
    • 2009
  • In this study, the flexural behavior of steel fiber reinforced ultra high performance concrete (UHPC) was investigated. It presents experimental results of steel fiber reinforced UHPC with steel fiber content of 2% by volume and steel reinforcement ratio of less than 0.02. This study aims at providing more information about UHPC beams in bending in order to establish a reasonable prediction model for flexural resistance and deflection in structural code in the future. The experimental results show that UHPC is in favor of cracking behavior and ductility of beams, and that the ductility indices range from 6.29 to 10.44, which means high ductility of UHPC. Also, the flexural rigidity of beam whose cast is begun from end of beam is larger than that of beam whose cast is begun from midspan of beam. This result represents that the flexural rigidity is affected by the placing method of UHPC.

An Experimental Study on Flexural Behavior of Beams Reinforced with Zinc-Coated Rebar (아연코팅 철근콘크리트 보의 휨 거동 실험 연구)

  • Yang, In-Hwan;Kim, Kyong-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.299-306
    • /
    • 2014
  • Coating is one of the methods used to solve the problem of corrosion of reinforcement in concrete structures. There are few research reported in the literature regarding the effect of zinc-coating on flexural behavior compared to epoxy coating. The objective of this study was to determine whether zinc-coated rebar adversely affects flexural behavior. Concrete beams reinforced with black or zinc-coated steel were tested in flexure. The test variables included the presence of rebar surface coating with zinc, steel ratio used and cover depth. The study concentrated on comparing crack pattern, crack width, deflection and strain. The ultimate flexural capacity of beams reinforced with zinc-coated bars was not different from that of black steel reinforced beams. The results from deflection and crack width measurements were indicative of no significant variation for the different rebar surface conditions. In addition, it was found that load-strain curve of beam reinforced with zinc-coated steel was similar to that of beam reinforced with zinc-coated steel. Therefore, the test results indicated that the use of zinc-coated rebar had no adverse effect on flexural behavior compared to the use of black rebar.

Analysis of the UHP-SFRCC(Ultra High Performance Steel Fiber Reinforced Cementitious Composites) I section Prestressed beam. (초고강도 섬유보강 시멘트 복합체 I형 프리스트레스트 보의 거동 해석)

  • Han Sang Mook;Kim Sung Wook;Kang Su Tae;Kang Jun Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.57-60
    • /
    • 2005
  • The objective of this paper is to investigate and analyze the behaviour of prestressed I section structural members constructed with ultra high perfomance steel fiber reinforced cementitious concrete (SFR-UHPC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The parameters of test specimens were span to depth ratio, prestressing force, prestressing wire placement and web width. Most influential parameter to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone should be redefined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

An Experimental Study on Shear Behavior of Polymer-Steel Fibrous High Strength Concrete Beams (폴리머-강섬유를 혼입한 고강도 콘크리트보의 전단거동에 관한 실험적 연구)

  • 곽계환;조선정;김원태;조한용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.601-608
    • /
    • 2000
  • Steel fiber and Polymer are used widely for the reinforcement material of RC structures because of its excellence of durability, serviceability as well as mechanical properties. Polymer-Steel fibrous high strength concrete beam's input ratio are 1.0%. The shear span-to-depth ratio are 1.5, 2.8 and 3.6, compressive strength of specimens 320kg/㎠, 436kgf/㎠ and 520kgf/㎠ in 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural crack and of diagonal crack, from which crack patte군 and fracture modes are earned. Also, stress-strain, load-strain and load-deflection are examined during the test cracks(shear crack, flexural crack, and diagonal tension crack), when the load values are sketched according to the growth of crack. Result are as follows; (1) The failure modes of the specimens increase in rigidity and durability in accordance with the increase of mixing steel fiber and polymer. (2) The load of initial crack was the same as the theory of shear-crack strength (3) Polymer-Steel fibrous high strength concrete beams have increased the deflection and strain at failure load, improving the brittleness of the high strength concrete. (4) In this result of study, an additional study need to make a need formular because the study is different from ACI formular and Zsutty formular.

  • PDF

Shear Strength of PC-CIP Composite Beams with Shear Reinforcement (횡 보강된 프리캐스트와 현장타설 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.189-199
    • /
    • 2014
  • Currently, in the precast concrete construction, Precast Concrete (PC) and Cast-In-Place (CIP) concrete with different concrete strengths are frequently used. However, current design codes do not specifically provide shear design methods for PC-CIP hybrid members using dual concrete strengths. In the present study, simply supported composite beams with shear reinforcement were tested. The test variables were the area ratio of the two concretes, spacing of shear reinforcement, and shear span-to-depth ratio. The shear strengths of the test specimens were evaluated by current design codes on the basis of the test results. The results showed that the shear strength of the composite beams was affected by the concrete strength of the compressive zone and also proportional to the flexural rigidity of un-cracked sections. Furthermore, the contribution of shear reinforcements varied according to the concrete strength of the compressive zone.

Experimental analysis and modeling of steel fiber reinforced SCC using central composite design

  • Kandasamy, S.;Akila, P.
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.215-229
    • /
    • 2015
  • The emerging technology of self compacting concrete, fiber reinforcement together reduces vibration and substitute conventional reinforcement which help in improving the economic efficiency of the construction. The objective of this work is to find the regression model to determine the response surface of mix proportioning Steel Fiber Reinforced Self Compacting Concrete (SFSCC) using statistical investigation. A total of 30 mixtures were designed and analyzed based on Design of Experiment (DOE). The fresh properties of SCC and mechanical properties of concrete were studied using Response Surface Methodology (RSM). The results were analyzed by limited proportion of fly ash, fiber, volume combination ratio of two steel fibers with aspect ratio of 50/35: 60/30 and super plasticizer (SP) dosage. The center composite designs (CCD) have selected to produce the response in quadratic equation. The model responses included in the primary stage were flowing ability, filling ability, passing ability and segregation index whereas in harden stage of concrete, compressive strength, split tensile strength and flexural strength at 28 days were tested. In this paper, the regression model and the response surface plots have been discussed, and optimal results were found for all the responses.

Bending performance and calculation of reinforced beam with hybrid fiber and CaCO3 whisker

  • Li Li;Yapeng Qin;Mingli Cao;Junfeng Guan;Chaopeng Xie
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.197-206
    • /
    • 2023
  • In this paper, the bending performance of a MSFRHPC (containing steel fiber, polyvinyl alcohol (PVA) fiber, and CW)-reinforced beam was studied for the first time. Introducing a multiscale fiber system increased the first crack load (up to 150%), yield load (up to 50%), and peak load (up to 15%) of reinforced beams. The multiscale fiber system delays cracking of the reinforced beam, reduces crack width of the reinforced beam in normal use, and improves the durability of the beam. Considering yield load and peak load, the reinforcing effect of multiscale fiber on the high-reinforcement ratio beam (1.00%) is better than that on the low-reinforcement ratio beam (0.57%). Introducing fibers slowed the development of cracks in the reinforced beam under bending. With the added hybrid fiber, the deformation concentration of reinforced beams after yield was more significant with concentration in 1 or 2 cracks. A model for predicting the flexural capacity of MSFRHPC-reinforced beams was proposed, considering the action of multiscale hybrid fibers. This research is helpful for structure application of MSFRHPC-containing CW.

Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 (I) Models and Load Distribution Ratios (전단경간비가 3 이하인 철근콘크리트 보의 스트럿-타이 모델 및 하중분배율(I) 모델 및 하중분배율)

  • Chae, Hyun-Soo;Yun, Young Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.257-265
    • /
    • 2016
  • The failure behavior of reinforced concrete beams is governed by the mechanical relationships between the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, two simple indeterminate strut-tie models which can reflect all characteristics of the failure behavior of reinforced concrete beams were proposed. The proposed models are effective for the beams with shear span-to-effective depth ratio of less than 3. For each model, a load distribution ratio, defined as the fraction of load transferred by a truss mechanism, is also proposed to help structural designers perform the rational design of the beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratios, the effect of the primary design variables including shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete was reflected through numerous material nonlinear analysis of the proposed indeterminate strut-tie models. In the companion paper, the validity of the proposed models and load distribution ratios was examined by applying them to the evaluation of the failure strength of 335 reinforced concrete beams tested to failure by others.