DOI QR코드

DOI QR Code

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete

강섬유로 보강된 초고성능 콘크리트의 휨 거동에 대한 실험 연구

  • Yang, In-Hwan (Dept. of Civil Engineering, Kunsan National University) ;
  • Joh, Chang-Bin (Dept. of Structures & Bridges, Korea Institute of Construction Technology) ;
  • Kang, Su-Tae (Dept. of Structures & Bridges, Korea Institute of Construction Technology) ;
  • Kim, Byung-Suk (Dept. of Structures & Bridges, Korea Institute of Construction Technology)
  • 양인환 (군산대학교 토목공학과) ;
  • 조창빈 (한국건설기술연구원 구조교량연구실) ;
  • 강수태 (한국건설기술연구원 구조교량연구실) ;
  • 김병석 (한국건설기술연구원 구조교량연구실)
  • Published : 2009.12.31

Abstract

In this study, the flexural behavior of steel fiber reinforced ultra high performance concrete (UHPC) was investigated. It presents experimental results of steel fiber reinforced UHPC with steel fiber content of 2% by volume and steel reinforcement ratio of less than 0.02. This study aims at providing more information about UHPC beams in bending in order to establish a reasonable prediction model for flexural resistance and deflection in structural code in the future. The experimental results show that UHPC is in favor of cracking behavior and ductility of beams, and that the ductility indices range from 6.29 to 10.44, which means high ductility of UHPC. Also, the flexural rigidity of beam whose cast is begun from end of beam is larger than that of beam whose cast is begun from midspan of beam. This result represents that the flexural rigidity is affected by the placing method of UHPC.

이 연구에서는 강섬유로 보강된 초고성능 콘크리트(UHPC)의 정적재하 실험을 통하여 UHPC를 적용한 구조 부재의 휨거동 특성을 파악하고자 하였다. 부피비 2%의 강섬유를 혼입하여 철근비가 0.02 이하인 부재의 실험을 통해 주요 휨거동 특성을 파악하였다. 이 연구 결과는 추후 UHPC의 처짐산정 및 휨강도 산정 모델링에 주요한 기초 실험 자료로 활용될 수 있을 것으로 사료된다. 강섬유 보강 UHPC는 균열제어에 효과적이며, 연성지수는 6.29${\sim}$10.44 범위에서 산정되고 있어 우수한 연성거동 특성을 나타낸다. 또한 단부타설 방법으로 제작한 UHPC 보의 휨강도는 중앙타설 방법으로 제작한 UHPC의 휨강도보다 크게 나타나고 있으며, 이는 타설 방법에 의한 강섬유 배열 특성이 휨강도에 영향을 미치고 있음을 나타낸다.

Keywords

References

  1. 한국건설기술연구원, 초고성능 시멘트 복합체를 이용한 교량 거더 개발, 한국건설기술연구원, 2005, pp. 14-22
  2. 강수태, 박정준, 고경택, 김성욱, “UHPC를 사용한 철근 콘크리트 보의 휨강도 평가,” 한국구조물진단학회지, 12권, 5호, 2008, pp. 81-90
  3. Li, V. C. and Fischer, G., “Reinforced ECC-An Evolution from Materials to Structures,” Proceedings of the 1st fib Congress-Concrete Structures in the 21st Century, Osaka, 2002, pp. 105-122
  4. DAfStB, State-of-the-art Report on Ultra High Performance Concrete-Concrete Technology and Design, draft 3, Deutscher Ausschuss fur Stahltbeton/German Association for Reinforced Concrete, Berlin, Germany, 2003, pp. 22-45
  5. Yuguang, Y., Walraven, J., and Uiji, J. D., “Study on Bending Behavior of an UHPC Overlay on a Steel Orthotropic Deck,” Proceedings of 2nd International Symposium on Ultra High Performance Concrete, Kassel, Germany, 2008, pp. 639-646
  6. Si-Larbi, A., Ferrier, E., and Hamelin, P., “Flexural Behavior of Ultra High Performance Concrete Reinforced with Short Fibers and CFRP Rebars,” Proceedings of 2nd International Symposium on Ultra High Performance Concrete, Kassel, 2008, pp. 661-672
  7. Chunxiang, Q. and Patnaikuni, I., “Properties of High-Strength Steel Fiber-Reinforced Concrete Beams in Bending,” Cement & Concrete Composites, Vol. 21, No. 21, 1999, pp. 73-81 https://doi.org/10.1016/S0958-9465(98)00040-7
  8. Manfred, T. and Jens, G., “Bending Design of Steel-Strengthened UHPC,” Proceedings of 2nd International Symposium on Ultra High Performance Concrete, Kassel, 2008, pp. 523-532
  9. Casanova, P. and Rossi, P., “Analysis of Metallic Fibre-Reinforced Concrete Beams Submitted to Bending,” Materials and Structures, Vol. 29, No. 190, 1999, pp. 354-361 https://doi.org/10.1007/BF02486343
  10. Naaman, A. E. and Reinhardt, H. W., “Proposed Classification of HPFRC Composites Based on Their Tensile Response,” Materials and Structures, Vol. 39, No. 5, 2006, pp. 547-555 https://doi.org/10.1617/s11527-006-9103-2
  11. Kooiman, A. G., “Modelling the Post-cracking Behavior of Steel Fibre Reinforced Concrete for Structural Design Purposes,” HERON, Vol. 45, No. 4, 2000, pp. 275-307
  12. Material Property Characterization of Ultra-High Performance Concrete, US Department Transportation, Federal Highway Administration, 2006, pp. 23-93
  13. 이주하, 양준모, 이승훈, 윤영수, “강섬유보강 초고강도 콘크리트의 확대타설을 통한 기둥하중전달 성능향상,” 콘크리트학회 논문집, 19권, 2호, 2007, pp. 209-216
  14. 강수태, 김윤용, 이방연, 김진근, “섬유의 방향성이 강섬유 보강 초고강도 콘크리트의 휨거동 특성에 미치는 영향,” 콘크리트학회 논문집, 20권, 6호, 2008, pp. 731-739 https://doi.org/10.4334/JKCI.2008.20.6.731
  15. 김우석, 곽윤근, 김주범, “강섬유 보강 콘크리트 보의 휨내력 예측식의 제안,” 콘크리트학회 논문집, 18권, 3호, 2006, pp. 361-370
  16. 오영훈, 김정해, “전단보강이 없는 강섬유보강 콘크리트 휨부재의 휨 및 전단강도의 평가,” 콘크리트학회 논문집, 20권, 2호, 2008, pp. 257-267 https://doi.org/10.4334/JKCI.2008.20.2.257
  17. American Concrete Institute, “Design Considerations for Steel Fiber Reinforced Concrete,” ACI 544.4R-88, ACI Manual of Concrete Practice, Detroit, 1988, pp. 544.4R-1-544.4R-18
  18. Fedaral Highway Administration, Material Property Characterization of Ultra-High Performance Concrete, Fedaral Highway Administration, 2006, pp. 23-49
  19. Shin, S. W., Ghosh, S. K., and Moreno, J., “Flexural Ductility of Ultra High Strength Concrete Members,” ACI Structural Journal, Vol. 86, No. 4, 1989, pp. 394-400

Cited by

  1. An Experimental Study on the Mechanical Behavior of Concrete Using Non-Sintered Cement vol.12, pp.1, 2012, https://doi.org/10.5345/JKIBC.2012.12.1.115
  2. Effect of hybrid fibre reinforcement on capacity of reinforced concrete beams vol.166, pp.10, 2013, https://doi.org/10.1680/stbu.12.00013
  3. Comparsions for Flexural Performance of Amorphous Steel Fiber Reinforced Concrete vol.24, pp.3, 2015, https://doi.org/10.7844/kirr.2015.24.3.66
  4. Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams vol.27, pp.3, 2015, https://doi.org/10.4334/JKCI.2015.27.3.283
  5. Evaluation of Flexural Behavior of Reinforced Concrete Beams Using Alkali Activated Slag Concrete vol.27, pp.3, 2015, https://doi.org/10.4334/JKCI.2015.27.3.311
  6. An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Prestressed Girders vol.22, pp.6, 2010, https://doi.org/10.4334/JKCI.2010.22.6.777
  7. Tension Stiffening of Reinforced High Performance Fiber Reinforced Cementitious Composites (HPFRCC) vol.22, pp.6, 2010, https://doi.org/10.4334/JKCI.2010.22.6.859
  8. Structural Behavior of Hybrid Steel Fiber-Reinforced Ultra High Performance Concrete Beams Subjected to Bending vol.26, pp.6, 2014, https://doi.org/10.4334/JKCI.2014.26.6.771
  9. Experiment of Flexural Behavior of Reinforced Concrete Beams with High Volume Fly Ash vol.26, pp.3, 2014, https://doi.org/10.4334/JKCI.2014.26.3.323
  10. Fiber Orientation Factor on a Circular Cross-Section in Concrete Members vol.26, pp.3, 2014, https://doi.org/10.4334/JKCI.2014.26.3.307
  11. Experiment of Shear Behavior of Reinforced Concrete Beams with High Volume Fly Ash vol.26, pp.4, 2014, https://doi.org/10.4334/JKCI.2014.26.4.525
  12. Strength Characteristics of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) in accordance with Physical Properties of Fiber vol.9, pp.1, 2018, https://doi.org/10.11004/kosacs.2018.9.1.044