• Title/Summary/Keyword: Flexor strength

Search Result 155, Processing Time 0.028 seconds

Effect of Exercise with Vertical Vibration on the Balance, Walking Speed, Muscle Strength and Falls Efficacy in the Elderly (수직 진동 운동이 노인의 균형, 보행속도, 근력 및 낙상효능감에 미치는 효과)

  • Park, Jin-Hwan;Kim, Young-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.131-143
    • /
    • 2020
  • PURPOSE: The purpose of this study was to determine if an exercise program with vertical vibration can improve balance, walking speed, muscle strength and falls efficacy in the healthy elderly. METHODS: A total of 28 elderly were randomly divided into two groups: vertical vibration exercise group (exercise with vertical vibration) (N = 14) and control group (exercise without vibration) (N = 14). The exercise program, comprising calf raise, deep-squat, semi-squat, front lunge, and leg abduction was conducted with or without vibration, respectively. Subjects in each group participated in the 30 minutes training program, 2 times per week for 6 weeks. In both groups, the balance evaluation system (BT4) was used to evaluate standing balance, and walking speed was measured using the 10MWT. The manual muscle test system was applied to evaluate the knee extensor and ankle planter flexor muscle strength of the subjects, whereas the Korean falls efficacy scale (K-FES) evaluated the falls efficacy. RESULTS: After intervention, the vertical vibration group showed significantly higher changes compared to the control group, in the parameters of standing balance (P < .05), 10MWT (P < .05), left knee extensor (P < .05), right knee extensor (P < .01), both ankle plantar flexors (P < .05), and K-FES (P < .05). CONCLUSION: The exercise program with vertical vibration has the potential to improve balance, walking speed, muscle power and falls efficacy in the elderly.

Relationship between Foot Morphology and Biomechanical Variables of the Lower Extremity Joints during Vertical Jump (수직점프 시 발의 형태학적 특징과 하지관절의 운동역학적 변인과의 관계)

  • Seong Hun Park;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.2
    • /
    • pp.45-52
    • /
    • 2024
  • Objective: The purpose of this study was to measure the morphological characteristics of the foot and biomechanical variables of the lower extremity joints during vertical jump and investigate the relationship between foot morphology and biomechanics of vertical jump. Method: 24 men in their 20s (age: 22.42 ± 1.41 yrs, height: 173.37 ± 4.61 cm, weight: 72.02 ± 6.21 kg, foot length: 251.70 ± 8.68 mm) participated in the study. Morphological characteristics of the foot included the length of the first toe, the length of the second toe, and the horizontal length from the center of ankle joint to the achilles tendon (Plantar Flexion Moment Arm [PFMA]). Biomechanical variables were measured for plantar flexor strength of the ankle joint and peak angular velocity, moment, and power of the lower extremity joint during vertical jump. Results: There was a significant correlation between the length of the first toe and plantar flexion strength at 30°/s [r=.440, p=.016], the angular velocity of the metatarsophalangeal [MTP] joint [r=-.369, p=.038] while significant correlations between PFMA and the angular velocities of the knee joint [r=.369, p=.038] and ankle joint [r=.420, p=.021] were found. There were also significant correlations between the length of the first toe and the maximum moment of the hip joint [r=.379, p=.034], and the length of the second toe and the power of the hip joint [r=-.391, p=.029]. Finally, significant correlations between PFMA and the power of the ankle joint [r=.424, p=.019] and MTP joint [r=.367, p=.039] were found. Conclusion: Based on the results of this study, the length of the toe and PFMA would be related to the function of the lower extremity joint. Therefore, this should be considered when designing the functional structure of a shoe. Furthermore, this relationship can be applied to intensive training for the plantar flexors and toe flexors to improve power in athletic performance.

The Effects of a Functional Movement Screen on Pain and Performance Ability in Professional Fencing Players (펜싱선수에서 통증과 수행 능력이 기능적 동작 검사에 미치는 영향)

  • Kim, Seong-Yeol;Lee, Je-Hoon;An, Seung-Heon
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • Purpose: The aim of this study was to investigate correlations between the Functional Movement Screen (FMS), pain, and performance ability in professional fencing players. Methods: Fifty-six athletes participated in this study. The pain group included those who had a score on a pain-related Visual Analogue Scale (VAS) of ${\geq}$20 and an Oswestry Disability Index (ODI) score ${\geq}$10). In the non-pain group, these scores were: VAS(<20), ODI(<10). The VAS and ODI were used to measure pain throughout the study. Performance ability included motor function of the lower extremities (as assessed by a Modified Functional Index Questionnaire, MFIQ), dynamic balance (Balance system, BS and Posture med, PM), flexor and extensor muscle strength of the lumbar region was recorded as maximal isometric strength. Results: Among athletes who had pain, 5 of 15(33.33%) showed impaired functional movement. Conversely, only 2 of 41(4.88%) of those who had no pain showed such impairment (FMS ${\leq}$14score). The athletes who had pain and who had an FMS score above 14 (10/56; 17.86%) showed a significantly higher score for extensor muscle strength of the lumbar compared with those with pain and an FMS score below 14 (5/56; 8.93%) were significant correlations between the FMS and pain (r=-0.40 to -0.42, p<0.01), the MFIQ (r=-0.33, p<0.05), dynamic balance (r=-0.27 to -0.40, p<0.05-0.01), muscle strength of the lumbar (r=0.27 to 0.29, p<0.05). Stepwise multiple regression analysis showed that the dynamic balance score (${\beta}{\beta}$=-0.41) had slightly more power in predicting FMS score than pain, motor function of lower extremity, or muscle strength. Conclusion: The FMS was significantly associated with values of pain, motor function of the lower extremities, dynamic balance, and muscle strength of the lumbar. However the FMS appears to lack relevance and reasonable evidence to suggest that it is an acceptable measurement tool for functional movement analysis.

The Effects of Lumbar Stabilization Exercise and Strengthening Exercise of Lower Extremity on Pain and Muscle Strength of Leg in Patients with Chronic Low Back Pain (요부 안정화운동과 하지 근력강화운동이 만성 요통환자의 통증과 하지근력에 미치는 영향)

  • U, Yebin;Kwon, Miyoung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.2
    • /
    • pp.47-54
    • /
    • 2015
  • Purpose: This study was to investigate the effects of lumbar stabilization exercise and lower extremity strengthening program on pain, lower extremity muscle in patients with chronic low back pain. Method: The subject were randomly divided two groups. 15 people who were conducted lower extremity exercises and lumbar stabilization exercises called the combined exercise group and other(15 people) who were only conducted lower extremity exercise group. The assessment tools were the pain level and the led muscle power. Exercise was conducted for eight weeks. Result: Pain of the combined exercise group showed significant differences in the change in pain level(p<.05). The leg muscle power showed significant differences within group which hip flexor, extensor muscles and abductor muscles. there were significant differences within combined exercise group (p<.05). But the knee joint in each group showed a significant difference within group (p<.05). Conclusion: This study suggest that the lumbar stabilization exercises and lower extremity exercises showed more efficient results in the pain levels and leg muscles power than only the lower extremity exercise for patients with lumbar instability.

Risk Factors for Falls among the Community-Dwelling Elderly in Korea

  • Sohng Kyeong-Yae;Moon Jung-Soon;Song Hae-Hiang;Lee Kwang-Soo;Kim Young-Sook
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.8
    • /
    • pp.1483-1490
    • /
    • 2004
  • Community-based centres were surveyed to determine the frequency of and risk factors for falls among elderly Koreans. We examined fall-related risk factors, including physiological and physical health, psychosocial functions, self-reported physical capacity and activity, vision, and the use of medication, among 351 elderly people aged 65 years or older, with ambulatory. Forty-two per cent of elderly Korean subjects reported at least one episode of falling in the previous 12 months, $38\%$ of whom had consequences that required either the attention of a physician or hospitalization. Factors significantly associated with an increased risk of falling were a restricted activity during the previous five years (adjusted OR 1.3), use of alternative therapy (adjusted OR 2.7), low knee flexor and extensor-muscle strength (adjusted OR 1.21 and 1.20), and poor balance with closed eyes (adjusted OR 8.32). We conclude that falls among older persons living in the community are common in Korea and that indicator of bad health and frailty or variables directly related to neuromuscular impairment are significant predictors of the risk of falling.

Development of a Modular-type Knee-assistive Wearable System (무릎근력 지원용 모듈식 웨어러블 시스템 개발)

  • Yu, Seung-Nam;Han, Jung-Soo;Han, Chang-Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.357-364
    • /
    • 2010
  • This study proposes a lower-limb exoskeleton system that is controlled by a wearer's muscle activity. This system is designed by following procedure. First, analyze the muscle activation patterns of human leg while walking. Second, select the adequate actuator to support the human walking based on calculation of required force of knee joint for step walking. Third, unit type knee and ankle orthotics are integrated with selected actuator. Finally, using this knee-assistive system (KAS) and developed muscle stiffness sensors (MSS), the muscle activity pattern of the subject is analyzed while he is walking on the stair. This study proposes an operating algorithm of KAS based on command signal of MSS which is generated by motion intent of human. A healthy and normal subject walked while wearing the developed powered-knee exoskeleton on his/her knees, and measured effectively assisted plantar flexor strength of the subject's knees and those neighboring muscles. Finally, capabilities and feasibility of the KAS are evaluated by testing the adapted motor pattern and the EMG signal variance while walking with exoskeleton. These results shows that developed exoskeleton which controlled by muscle activity could help human's walking acceptably.

The Effect of Intensive Functional Electrical Stimulation on the Gait in Chronic Hemiplegic Patients (집중적 전기 자극치료가 만성 뇌졸중 환자의 보행에 미치는 효과)

  • Park, Hea-Woon;Lee, Zee-Ihn;Lee, Yang-Soo
    • Annals of Clinical Neurophysiology
    • /
    • v.7 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • Background: The purpose of this study is to investigate the effect of the intensive functional electrical stimulation(FES) on the improvement of the gait pattern of the chronic hemiplegic patients. Method: Six hemiplegic patients, who could walk independently but have equinovarus deformity during the gait cycle, participated in this study. The affected peroneus longus and tibialis anterior muscles of all subjects were stimulated for 2 weeks period (20 minutes duration, 6 times/day). We measured the activities (mean voltage) of those muscles during the walking, using dynamic EMG. Results: After treatment, there were significant improvements in the strength of peroneus longus and tibialis anterior muscles and the gait speed, but there was no interval change of the spasticity of plantar flexor. The mean voltages of two muscles are significantly increased in all the patients (p<0.05). Conclusion: The results showed that the intensive FES on affected peroneus longus and tibialis anterior muscles in chronic hemiplegic patients could be useful for the improvement of functional gait.

  • PDF

APPLICATION OF ARTIFICIAL DERMIS($Terudermis^{(R)}$) AND SPLIT THICKNESS SKIN GRAFT ON THE DONOR SITE OF RADIAL FOREARM FLAP (인공진피($Terudermis^{(R)}$)와 부분층 피부이식을 이용한 전완피판 공여부 수복)

  • Oh, Jung-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.3
    • /
    • pp.227-232
    • /
    • 2007
  • The radial forearm fasciocutaneous flap(RFFF) is a well-known flap for the reconstruction of oral and maxillofacial defects. It was first described by Yang et al. in 1981 and Soutar et al. developed it for the reconstruction of intraoral defect. RFFF provides a reliable, thin, and pliable soft tissue/skin paddle that is amenable to sensate reconstruction. It also has a long vascular pedicle that can be anastomosed to any vessel in either the ipsilateral or contralateral neck. However, split thickness skin graft(STSG) is most commonly used to cover the donor site, and a variety of donor site complications have been reported, including delayed healing, swelling of the hand, persistent wrist stiffness, reduced hand strength, and partial loss of the graft with exposure of the forearm flexor tendon. Various methods for donor site repair in addition to STSG have been developed and practiced to minimize both functional and esthetic morbidity, such as direct closure, V-Y closure, full thickness skin graft, tissue expansion, acellular dermal graft. We got a good result of using artificial dermis($Terudermis^{(R)}$) and secondary STSG for the repair of RFFF donor site defect esthetically and report with a review of literature.

A Study on Isokinetic Strength Ratios of Hip joints in Above-knee Amputees (대퇴절단환자의 고관절 등속성근력비율에 관한 연구)

  • Song, Chang-Ho;Lee, Wan-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.1
    • /
    • pp.74-82
    • /
    • 2003
  • The purpose of this study is to provide guideline of muscle strengthening exercise for preparing ambulation by presenting suitable ratio of muscle power of agonist & antagonist, and that of concentric & eccentric contraction on behalf of amputee's normal ambulation training and it's strenthening as well. 7 Subjects who have femur amputee for experimental group were able to ambulate naturally without inconvenience and 20 adult subjects of comparison group for comparison were considered to be free from disturbance of ambulation. The method of study was to measure the muscle power of hip pint, was to figure out the ratio of agonist & antagonist, concentric contraction & eccentric contraction, and was to find out mean and standard deviation of each measurement. Every numerical value of comparison was tested by Mann-whitney and comparison group's comparison between left & right value was done with t-test. Results are as followings : 1) Extension force was stronger than flexor force and had no remarkable difference(p<0.05) 2) For normal adults, adduction farce was stronger than abduction force and for amputees, abduction force was stronger while adduction force was the same as the normal without showing remarkable difference(p<0.05) According the result above, I make an assumption that maintaining a proper ratio of muscle power on strengthening exercise for amputee's ambulation training & rehabilitation and finally bring out an improvement of transfer and ambulation.

  • PDF

Differences in Rectus Femoris Activation Among Skaters Wearing Fabric Speed Skating Suits with Different Levels of Compression

  • Moon, Young-Jin;Song, Joo-Ho;Hwang, Jinny
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • Objective: The purpose of this study was to investigate how different levels of compression exerted on the femoral region (known as the power zone) by coated fabric influences the activation and anaerobic capacity of the rectus femoris. Method: Three different levels of compression on the rectus femoris of the participants, namely 0% (normal condition), 9% (downsize), and 18% (downsize), were tested. The material of the fabric used in this study was nonfunctional polyurethane. Surface electromyography test was used to investigate the activation of the rectus femoris, while the isokinetic test (Cybex, $60^{\circ}/sec$) and Wingate test were used to investigate the maximum anaerobic power. Results: The different compression levels (0%, 9%, and 18%) did not improve the strength and anaerobic capacity of the knee extensor. However, knee flexor interfered with activation of the biceps femoris, which is an agonist for flexion, during 18% compression. Conclusion: Compression garments might improve the stretch shortening cycle effect at the time of eccentric contraction and during transition from eccentric to concentric contraction. Therefore, future studies are required to further investigate these findings.