• 제목/요약/키워드: Flexible space

검색결과 688건 처리시간 0.027초

Three-axis Attitude Control for Flexible Spacecraft by Lyapunov Approach under Gravity Potential

  • Bang, Hyo-Choong;Lee, Kwang-Hyun;Lim, Hyung-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.99-109
    • /
    • 2003
  • Attitude control law synthesis for the three-axis attitude maneuver of a flexible spacecraft model is presented in this study. The basic idea is motivated by previous works for the extension into a more general case. The new case includes gravitational gradient torque which has significant effect on a wide range of low earth orbit missions. As the first step, the fully nonlinear dynamic equations of motion are derived including gravitational gradient. The control law design based upon the Lyapunov approach is attempted. The Lyapunov function consists of a weighted combination of system kinetic and potential energy. Then, a set of stabilizing control law is derived from the basic Lyapunov stability theory. The new control law is therefore in a general form partially validating the previous work in some sense.

부분 분리법에 의한 유연성이 있는 대형구조물의 최적제어 (Optimal Control of Large Flexible Structures Via Partial Decoupling)

  • Jeon, Gi-Joon
    • 대한전자공학회논문지
    • /
    • 제23권2호
    • /
    • pp.189-196
    • /
    • 1986
  • Linear second-order matrix systems representing dynamics of large flexible structures are recast in a state space form. By can efficient partial decoupling technique, a few of low frequency modes are decoupled from the rest of modes, and an optimal control procedure is developed in such a way that damping is added to the selected modes without control spillover to uncontrolled modes. Since the partial decoupling requires only eigenvectors of the sected modes, the computing time can be reduced significantly in large systems. Therefore, the method of partial decoupling and control developed in this work may be applicable to vibration contorl of large flexible space structures.

  • PDF

유비쿼터스 환경에서의 주거 건축설계 방향설정 연구 (A Design Direction for Residential Space under Ubiquitous Environment)

  • 윤기병
    • 한국주거학회논문집
    • /
    • 제17권4호
    • /
    • pp.145-153
    • /
    • 2006
  • Ubiquitous space can be described as a combined space of physical space and digital space. Ubiquitous space possesses new possibilities by combining the two. The concept of ubiquitous home will bring new changes in residential space design. First of all, it makes possible for more convenient and secure home. It has to be developed along with city and town level changes as ubiquitous environment. Secondly, concept of extended space as an extension of living space becomes possible by linking with outside spaces. Thirdly, as consumer requirements for residential spaces will become more versatile by social changes, ubiquitous home can be a good means to meet these versatile consumer requirements by accommodating concept of multi-functional space and flexible space. It is quite important to predict user requirements in rapidly changing social environment and versatile personal inclinations. Instead of POE methodology which can analyze and evaluate in exiting types of designs, storytelling methodology can be used to predict and direct for future requirements of living. The methodology makes scenarios of space usage for future living and extracts design requirements for the living. The concept of intelligent space has to be introduced. It is different from digital home that only accomodate digital devices in space. In intelligent space, space itself has to be recognized as an identity that interacts human directly. Intelligent space recognize human requirements and control digital devices as a response. Multi-functional space is closely related with intelligent space that can changes for business, entertainments as well as for rests by user requirements instantly. Flexible space that also intends to meet requirements of mobility and versatility can be attained through the integration of digital technology into current physical mobile systems. Interaction design becomes integral part for ubiquitous space design along with physical design. For the residential space design, digital illiteracy has to be considered for interaction design. Instead of the concept of passive existence, space itself has to be recognized as active subsistence that reacts with human. Intuitive and natural interaction for human will be a key design element for space-human interface design.

유아발달특성에 따른 신체-운동 공간의 가변성에 관한 연구 (A study on the new transition space for infants of their physical activities)

  • 박태욱
    • 한국실내디자인학회논문집
    • /
    • 제17권1호
    • /
    • pp.130-137
    • /
    • 2008
  • The society changes very fast from the extended family system to the nuclear family system, as increasing a one-child family for the low birth-rate. Thus, it causes that the education, having been performed inside of the family group, is performed outside of the family nowadays such as an infant educational institution. Fundamentally, the space of educating infants must be considered their behavior and meet their needs. For infants, playing is not only studying, but also is related to physical, intellectual and emotional development. Therefore infants in a qualifiedly good playing environment, are easy to focus on their playing. But, variety of playing activities can help improve infants' development physically, socially, emotionally, linguistically and intellectually. So far, an infant educational institution has provided a general education than a special educationally considering their age and status of a development. However, it is necessary to provide an integrated and well-organized place for each infant because their playing is a studying and education that will be based of individuals' character when they are grown up. The objective of this thesis is to study on the new transition space for infants of their physical activities. For this study, at first, it is important to understand what are the points of well-built kindergarten around the world. They have the flexible space in common. The transition(flexible) space will be a solution for space for infants' development.

분절적이고 유연성있는 우주 구조물의 동역학적 해석 및 자세제어 (Nonlinear Synamics and Attitude Control of Articulated and Flexible Spacecraft)

  • 백명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.937-942
    • /
    • 1993
  • This paper extends the authors' prior work on the regulation of flexible space structures via partial feedback linearization (PFL) methods to articulated systems. Recursive relations introduced by Jain and Rodriguez are central to the efficient formulation of models via Poincare's form of Lagrange's equations. Such models provide for easy construction of feedback linearizing control laws. Adaptation is shown to be an effective way of reducing sensitivity to uncertain parameters. An application to a flexible platform with mobile remote manipulator system is highlighted.

  • PDF

On Flexibility in Architecture Focused on the Contradiction in Designing Flexible Space and Its Design Proposition

  • Kim, Young-Ju
    • Architectural research
    • /
    • 제15권4호
    • /
    • pp.191-200
    • /
    • 2013
  • Since Modern Movement flexibility has been one of the most attractive words in architecture. However, "overprovision first, division later" has been the most prevailing design method for spatial flexibility, and many of buildings designed for flexible use are practically quite inflexible due to insufficient building systems or/and irresponsible planning. There have been two dominant strategies to achieve architectural flexibility: multi-functionality and polyvalence. These two approaches, which point contradictory directions, actually reflect the difficulty in providing a proper form of architectural flexibility. Multi-functionality can afford changeable environments with satisfying spatial conditions; however it lacks tolerance to accommodate other uses but intended functions by architects. Meanwhile, flexibility by a polyvalent form relies on the vague anticipation of user's various interpretations. In this study by looking up these two different standpoints and historical precedents flexibility in architecture is carefully scrutinized focused on the contradiction, and as an alternative for architectural flexibility contextual relations is proposed. Unlike both multi-functionality and polyvalence, which produce flexibility by changing its own properties, manipulating contextual relations infuses flexibility into space by changing the properties of a building, not of its individual room. By using this contextual relations method, a community-centered school in Manhattan, NY, which was in danger of being closed because of its academic failure, is represented as a flexible space.

마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격에 대한 유한요소 과도응답 해석 (A FE Transient Response Analysis of a Flexible Rotor-Bearing System with Mount System to Base Shock Excitation)

  • 이안성;김병옥;김영철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.387-392
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems such as warships, submarines and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of rotors, considering the dynamics of mount designs to be applied with. In this study a generalized FE transient response analysis model, introducing relative displacements, is firstly proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model or a Jeffcott rotor. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

  • PDF

마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격 과도응답 해석을 위한 유한요소 모델링 (FE Modeling for the Transient Response Analysis of a Flexible Rotor-bearing System with Mount System to Base Shock Excitation)

  • 이안성;김병옥
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1208-1216
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems, including aircrafts, ships, and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of their rotors, considering the dynamics of mount designs to be applied. In this study a generalized FE transient response analysis model, introducing relative displacements, is proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model, obtained by treating a rotor as concentrated lumped mass, equivalent spring and a damper or Jeffcott rotor model. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

유연수지를 기지재료로 하는 복합재료의 비선형거동 예측 (Prediction of Non-linear Behavior of Flexible Matrix Composites)

  • 서영욱;우경식
    • 한국항공우주학회지
    • /
    • 제34권10호
    • /
    • pp.24-31
    • /
    • 2006
  • 본 논문에서는 유연수지 복합재료에 대하여 기하학적 비선형해석을 수행하였다. 실제 랜덤한 섬유배열을 사각배열과 육각배열로 가정하고 각각에 대해 단위구조를 정의하였다. 다양한 하중상태를 수치적으로 모사하여 단위구조해석을 통해 전체 구조물의 응력-변형률 선도를 예측하였고 이로부터 등가물성치를 계산하였다. 해석시 유연수지의 초탄성 성질을 정의하기 위해 Mooney-Rivlin모델을 사용하였다. 계산결과, 유연수지 복합재료 구조물은 변형률 증가에 따라 비선형의 응력-변형률 관계를 보였다. 비선형성은 횡방향 하중 상태에서 더욱 두드러지게 나타났으며, 이 경우 복합재 단면의 섬유배열 형태에 따라 상당한 차이를 보여주었다.