• Title/Summary/Keyword: Flexible link

Search Result 285, Processing Time 0.024 seconds

Nonlinear variable structure system control for flexible link robot manipulators (유연성 로봇 매니퓰레이터에 대한 비선형 가변구조제어)

  • 김성태;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.280-284
    • /
    • 1997
  • In this paper, Nonlinear VSS control based on bang-bang control concept is derived under the assumption that the control input is bounded. We try to derive control algorithm which has almost same performance as the time optimal control. We focus this control scheme on the real implementation of DC motor position controller of flexible link, i.e. we obtain the switching curves from the real data of DC motor system operating under the full maximum and minimum applied voltages. State space is separated into several regions and we set different switching surfaces in each region to reduce chattering problem. The efficiency of the proposed controller is compared with PID controller and it is shown that the controller converges fast than PID controller without chattering. The hybrid controller scheme is also proposed not only to control the position of hub but also to reduce the vibration of end tip of flexible link.

  • PDF

Control of a Flexible Link with Time Delays

  • Choi, Hyoun-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1136-1141
    • /
    • 2004
  • This paper presents a control method for time-delay systems and verifies the performance of the designed control system via real experiments. Specifically, the control method is applied to a flexible-link system with time delays. The method combines time- and frequency-domain controllers: linear quadratic optimal controller (or LQR) and lag compensator. The LQR is used to stabilize the system in optimal fashion, whereas the lag compensator is used to compensate time-delay effects by increasing the delay margin of the system. With this methodology, the maximum allowable time delay can be increased significantly. The proposed method is simple but quite practical for time-delay system control as it is based on the conventional loop-shaping method, which gives practical insights on delay-phase relationship. Simulation and experiment results show that the method presented in this paper is feasible and practical.

  • PDF

Adaptive Vibration Control of Flexible One-Lind Manipulator (유연한 단일링크 조작기의 적응진동제어)

  • 박영욱;김재원;박영필
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.385-394
    • /
    • 1995
  • Recently, since robot manipulator becomes faster and lighter, its link is no longer regarded as rigid body, and robot controller which only controls robot position cannot reduce vibration of the flexible link. Therefore vibration control is needed in robot manipulator control in addition to position control. In the case that tip mass changes when robot manipulator in working, it is clear that the efficiency of the vibration/position controller designed for the fixed system goes down. In this paper, the system with time varying parameters, adaptive control theory is adopted which estimates parameters changed by the variation of the tip mass and re-calculates the gain of the controller. Validify of the proposed adaptive controller and capability of the estimator are evaluated by computer simulations and experiments. Comparison results of the optimal controller for the fixed system and proposed adaptive controller and carried out.

  • PDF

Adaptive Control of Flexible-Link Robots (유연마디 로봇의 적응제어)

  • Lee, Ho-Hun;Kim, Hyeon-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1689-1696
    • /
    • 2000
  • This paper proposes a new adaptive control scheme for flexible-link robots. A model-based nonlinear control scheme is designed based on a V-shape Lyapunov function, and then the nonlinear control i s extended to a model-based adaptive control to cope with parametric uncertainties in the dynamic model. The proposed control guarantees the global exponential or global asymptotic stability of the overall control system with all internal signals bounded. The effectiveness of the proposed control is shown by computer simulation.

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.

A Study on Position control of a Flexible One-Link Robot Arm (유연한 단일축 로보트 팔의 위치제어)

  • 송봉기;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.200-206
    • /
    • 1991
  • In this paper, an output feedback is used to reduce the effect of the vibration in the control of a flexible one-link robot arm. A PD control method with a time varying gain is proposed to improve the performance of the system in tip deflection and settling time for the step reference input. By making the change of feedback gain smoothly, th input torque can be made smooth. When there is a payload with unknown mass, an interpolation method which uses the inrehgrated value of the transient response of the hub angle is proposed for the estimation of teh payload mass. This method can be used when the reference input is known and we can get highly accurate estimate for the unknown payload. It is also demonstrated that flexible one-link arm can be controlled prettry accurately by an output feedback in a noisy environment without knowing the mass of the payload.

  • PDF

$H_{\infty}$ Self-Tuning Control of a Flexible Link Robot with Unknown Payload (미지 부하 질량을 갖는 유연 링크 로봇의 $H_{\infty}$ 자기 동조 제어)

  • Han, Ki-Bong;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.160-168
    • /
    • 1997
  • A $H_{\infty}$self-tuning control scheme for the tip position of a flexible link robot handling unknown loads is presented here. The scheme essentially comprises a recursive least-squares identification algorithm and $H_{\infty}$self-tunning controller. The $H_{\infty}$control low is designed to be robust to uncertain parameters and the self-tunning action provides adaption to unknown parameters. Through numerical study, the performance comparison of the $H_{\infty}$self-tuning controller with a constant gain $H_{\infty}$controller as well as a LQG self-tuning controller clearly shows its superior ability in handling load changes in quiescent states.nt states.

  • PDF

Position and Vibration Control of Flexible 2-Link Robot Arm Using Piezoelectric Actuators and Sensors (압전 작동기 및 감지기를 이용한 유연한 2링크 로봇팔의 위치 및 진동제어)

  • Sin, Ho-Cheol;Choe, Seung-Bok;Kim, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.206-212
    • /
    • 2000
  • This paper presents a hybrid actuator scheme to actively control the end-point position and vibration of a two-link flexible robot arm. Control scheme consists of four different actuators; two servo-motors at the hubs and two piezoceramics bonded to the surfaces of the flexible links. Two sliding hyperplanes are designed for two servo-motors which have time varying parameters to maintain control performance in any configuration. The surface gradients of the hyperplanes are determined by pole assignment technique to guarantee the stability on the hyperplanes themselves. During the motion, undesirable oscillations caused by the torques based on the rigid link dynamics are actively suppressed by applying feedback control voltages to the piezoceramic actuators. Consequently, desired tip motion is achieved. In order to demonstrate the effectiveness of the proposed methodology, experiments are performed for the regulating and tracking control problems.

  • PDF

Pseudo-symmetrically Dispersion-Managed Optical Transmission Links with Midway OPC for Compensating for Distorted WDM Signals

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.228-234
    • /
    • 2015
  • The system performance improvement in dispersion managed (DM) links combined with optical phase conjugator (OPC) for compensating for optical signal distortion due to group velocity dispersion and nonlinear fiber effects has been reported. However, in DM link combined OPC, the equalities of the lengths of single-mode fibers (SMFs), the length of dispersion compensating fibers (DCFs), the dispersion coefficient of DCF, and the residual dispersion per span (RDPS) with respect to an OPC restrict a flexible link configuration. Thus, in this paper, we propose a flexible optical link configuration with inequalities of link parameters, the so-called "pseudo-symmetric configuration." Simulation results show that, in the restricted RDPS range of 450 ps/nm to 800 ps/nm, the improvement in the system performance of the proposed pseudo-symmetrically configured optical links is better than that of the asymmetrically configured optical links. Consequently, we confirmed that the proposed pseudo-symmetric configuration is effective and useful for implementing a reconfigurable long-haul wavelength-division multiplexing (WDM) network.

Formulation of the equation of motion for flexible robotics arms by using the finite element and modal reduction method (유한요소및 모달감소법을 이용한 유연로보트팔 운동방정식의 정식화)

  • 김창부;유영선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.533-538
    • /
    • 1991
  • In the design and operation of robot arms with flexible links, the equations of motion are required to exactly model the interaction between rigid motion and elastic motion and to be formulated efficiently. Thus, the flexible link is represented on the basis of the D-H rigid link representation to measure the elastic deformation. The equations of motion of robot arms, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated by using F.E.M. to model complex shaped links systematically and by eliminating elastic mode of higher order that does not largely affect motion to reduce the number of elastic degree of freedom. Finally, presented is the result of simulation to flexible robotic arm whose joints are controlled by direct or PD control,

  • PDF