• Title/Summary/Keyword: Flexible foundation effects

Search Result 28, Processing Time 0.025 seconds

The Causal Relationship between the Acceptance Attitudes and the Expected Effects of Smart Work

  • Park, Kiho
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.1
    • /
    • pp.151-163
    • /
    • 2014
  • This paper explores the causal relationship between acceptance attitudes and expected effects of smart work. With the rapid development of smart technologies, lots of organizations try to innovate in the conventional working styles for maximizing organizational effectiveness and efficiency. Although many organizations wish to foster smart working environment, they don't have confidence in detailed action plans and effects from it. Therefore, this study that explores the causal relationship between acceptance attitudes and effects may have crucial meaning to organizations pursuing smart work. In this research empirically conducted by questionnaire survey, the acceptance attitudes as predictors and the expected effects of smart work as influenced variables were used. This research analyzed 118 collected data and multiple regression analysis. As a result of analysis, teleworking shows the positive relations to all of dependent variables. And others have a positive or negative influence on effects of smart work. Results of this study may give implications to organizations that want to implement smart work environment.

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.

A Study on the Effects of Flexible Operation of Imported Grain Transportation Vehicles on Logistics Costs by Considering Empty Transfer Rates (공차율을 고려한 유연한 수입곡물 화물차운영이 물류비용에 미치는 영향에 관한 연구)

  • Kim, Byeong Chan;Yang, Dae Yong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.193-203
    • /
    • 2012
  • This study analyzed regular transportation costs between port warehouses and processing plants and between processing plants and central distribution centers and further transportation costs relations according to empty transfer rates in each circulation by examining the distribution routes of imported grain including wheat, barley, corn, and soybean, namely port warehouses, processing plants, and central distribution centers. Based on the results, the study compared and reviewed the logistics transportation costs. The analysis results of the alternative model show that logistics operational costs could be considerably cut down by introducing a flexible vehicle transportation operational method, which is to change the vehicle loading parts for proper substitute transportation after unloading and transport them to other locations such as central distribution centers instead of returning empty, as an alternative to high operational costs deriving from empty vehicle operation in each circulation after unloading items in case of transportation of imported grain and processed items. The results allow for a more realistic approach to general problems with large-scale distribution network operation and provide a theoretical foundation to serve as a guide to establish policies for corporate operation of imported grain logistics systems.

Effect of biaxial stress state on seismic fragility of concrete gravity dams

  • Sen, Ufuk;Okeil, Ayman M.
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.285-296
    • /
    • 2020
  • Dams are important structures for management of water supply for irrigation or drinking, flood control, and electricity generation. In seismic regions, the structural safety of concrete gravity dams is important due to the high potential of life and economic loss if they fail. Therefore, the seismic analysis of existing dams in seismically active regions is crucial for predicting responses of dams to ground motions. In this paper, earthquake response of concrete gravity dams is investigated using the finite element (FE) method. The FE model accounts for dam-water-foundation rock interaction by considering compressible water, flexible foundation effects, and absorptive reservoir bottom materials. Several uncertainties regarding structural attributes of the dam and external actions are considered to obtain the fragility curves of the dam-water-foundation rock system. The structural uncertainties are sampled using the Latin Hypercube Sampling method. The Pine Flat Dam in the Central Valley of Fresno County, California, is selected to demonstrate the methodology for several limit states. The fragility curves for base sliding, and excessive deformation limit states are obtained by performing non-linear time history analyses. Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake.

Soil-structure interaction effects on collapse probability of the RC buildings subjected to far and near-field ground motions

  • Iman Hakamian;Kianoosh Taghikhani;Navid Manouchehri;Mohammad Mahdi Memarpour
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.99-112
    • /
    • 2023
  • This paper investigates the influences of Soil-Structure Interaction (SSI) on the seismic behavior of two-dimensional reinforced concrete moment-resisting frames subjected to Far-Field Ground Motion (FFGM) and Near-Field Ground Motion (NFGM). For this purpose, the nonlinear modeling of 7, 10, and 15-story reinforced concrete moment resisting frames were developed in Open Systems for Earthquake Engineering Simulation (OpenSees) software. Effects of SSI were studied by simulating Beam on Nonlinear Winkler Foundation (BNWF) and the soil type as homogenous medium-dense. Generally, the building resistance to seismic loads can be explained in terms of Incremental Dynamic Analysis (IDA); therefore, IDA curves are presented in this study. For comparison, the fragility evaluation is subjected to NFGM and FFGM as proposed by Quantification of Building Seismic Performance Factors (FEMA P-695). The seismic performance of Reinforced Concrete (RC) buildings with fixed and flexible foundations was evaluated to assess the probability of collapse. The results of this paper demonstrate that SSI and NFGM have significantly influenced the probability of failure of the RC frames. In particular, the flexible-base RC buildings experience higher Spectral acceleration (Sa) compared to the fixed-base ones subjected to FFGM and NFGM.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT

  • Mohammadimehr, Mehdi;Firouzeh, Saeed;Pahlavanzadeh, Mahsa;Heidari, Yaser;Irani-Rahaghi, Mohsen
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.75-94
    • /
    • 2020
  • The aim of this research is to investigate free vibration of a novel five layer Timoshenko microbeam which consists of a transversely flexible porous core made of Al-foam, two graphen platelets (GPL) nanocomposite reinforced layers to enhance the mechanical behavior of the structure as well as two piezo-magneto-electric face sheets layers. This microbeam is subjected to a thermal load and resting on Pasternak's foundation. To accomplish the analysis, constitutive equations of each layer are derived by means of nonlocal strain gradient theory (NSGT) to capture size dependent effects. Then, the Hamilton's principle is employed to obtain the equations of motion for five layer Timoshenko microbeam. They are subsequently solved analytically by applying Navier's method so that discretized governing equations are determined in form of dynamic matrix giving the possibility to gain the natural frequencies of the Timoshenko microbeam. Eventually, after a validation study, the numerical results are presented to study and discuss the influences of various parameters such as nonlocal parameter, strain gradient parameter, aspect ratio, porosity, various volume fraction and distributions of graphene platelets, temperature change and elastic foundation coefficients on natural frequencies of the sandwich microbeam.

Suspended Columns for Seismic Isolation in Structures (SCSI): Experimental and numerical studies

  • Shahabi, Ali Beirami;Ahari, Gholamreza Zamani;Barghian, Majid
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.17-28
    • /
    • 2020
  • In this paper, a modified and improved seismic isolation system called suspension columns for seismic isolation was investigated. An experimental study of the proposed isolation method, together with theoretical and numerical analyses, has thoroughly been conducted. In the proposed method, during the construction of the foundation, some cavities are created at the position of the columns inside the foundation and the columns are placed inside the cavities and hanged from the foundation by flexible cables rather being directly connected to the foundation. Since the columns are suspended and due to the gap between the columns and walls of the cavities, the structure is able to move freely to each side thus, the transmitted seismic actions are reduced. The main parameter of this isolation technique is the length of the suspension cable. As the cable length is changed, the natural frequency of the structure is also changed, thus, the desired frequency can be achieved by means of an appropriate cable length. As the experimental phase of the study, a steel frame structure with two floors was constructed and subjected to the acceleration of three earthquakes using a shaking table with different hanging cable lengths. The structural responses were recorded in terms of acceleration and relative displacement. The experimental results were compared to the theoretical and numerical ones, obtained from the MATLAB programming and the finite element software ABAQUS, showing a suitable agreement between them. The results confirm the effectiveness of the proposed isolation method in reducing the seismic effects on the structure.

Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.663-686
    • /
    • 2014
  • This paper deals with free vibration analysis of bidirectional functionally graded annular plates resting on a two-parameter elastic foundation. The formulations are based on the three-dimensional elasticity theory. This study presents a novel 2-D six-parameter power-law distribution for ceramic volume fraction of 2-D functionally graded materials that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. Various material profiles along the thickness and in the in-plane directions are illustrated by using the 2-D power-law distribution. The effective material properties at a point are determined in terms of the local volume fractions and the material properties by the Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The fast rate of convergence of the method is shown and the results are compared against existing results in literature. Some new results for natural frequencies of the plates are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded materials.

Seismic Response of Structure on Flexible Foundation (유연한 기초 위에 세워진 구조물의 지진거동)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • Seismic analyses of structures were carried out in the past assuming a right base and Ignoring the characteristics of foundations and the properties of the underlying soil. Resent soil-structure interaction studies show that seismic response of structure can be affected significantly by these fators. Typical effects of the soil-structure interaction are the kinematic interaction of a rigid massiess foundation and the inertial interaction between underlying soil and structure. The kinematic interaction effect is particularly important for embedded foundations and can be ignored for surface foundations with vertically propagating waves. In this study, seismic response of structure was investigated with four buildings in Mexico City considering only the inertial interaction effect and using the E-W components of the 1985 Mexico City earthquake records. The study was carried out for surface foundations and pile foundations with linear and nonlinear soil conditions, comparing the results with those of the rigid base.

  • PDF