DOI QR코드

DOI QR Code

Soil-structure interaction effects on collapse probability of the RC buildings subjected to far and near-field ground motions

  • Iman Hakamian (School of Civil Engineering, Iran University of Science and Technology) ;
  • Kianoosh Taghikhani (Faculty of Civil Engineering, RWTH Aachen University) ;
  • Navid Manouchehri (Price Faculty of Engineering, Civil Engineering Department, University of Manitoba) ;
  • Mohammad Mahdi Memarpour (Department of Civil Engineering, Faculty of Engineering and Technology, Imam Khomeini International University)
  • Received : 2023.04.14
  • Accepted : 2023.07.12
  • Published : 2023.08.25

Abstract

This paper investigates the influences of Soil-Structure Interaction (SSI) on the seismic behavior of two-dimensional reinforced concrete moment-resisting frames subjected to Far-Field Ground Motion (FFGM) and Near-Field Ground Motion (NFGM). For this purpose, the nonlinear modeling of 7, 10, and 15-story reinforced concrete moment resisting frames were developed in Open Systems for Earthquake Engineering Simulation (OpenSees) software. Effects of SSI were studied by simulating Beam on Nonlinear Winkler Foundation (BNWF) and the soil type as homogenous medium-dense. Generally, the building resistance to seismic loads can be explained in terms of Incremental Dynamic Analysis (IDA); therefore, IDA curves are presented in this study. For comparison, the fragility evaluation is subjected to NFGM and FFGM as proposed by Quantification of Building Seismic Performance Factors (FEMA P-695). The seismic performance of Reinforced Concrete (RC) buildings with fixed and flexible foundations was evaluated to assess the probability of collapse. The results of this paper demonstrate that SSI and NFGM have significantly influenced the probability of failure of the RC frames. In particular, the flexible-base RC buildings experience higher Spectral acceleration (Sa) compared to the fixed-base ones subjected to FFGM and NFGM.

Keywords

References

  1. Amiri, A.M., Ghanbari, A. and Derakhshandi, M. (2018), "Analytical model for natural frequency of SDOF system considering soil-pile-structure interaction", Int. J. Civil Eng., 16, 1399-1411. https://doi.org/10.1007/s40999-018-0284-1.
  2. Anvarsamarin, A., Rofooei, F.R. and Nekooei, M. (2018), "Soil-structure interaction effect on fragility curve of 3D models of concrete moment-resisting buildings", Shock Vib., 2018, 1. https://doi.org/10.1155/2018/7270137.
  3. Applied Technology Council (2009), Quantification of Building Seismic Performance Factors, US Department of Homeland Security, FEMA, Washington, D.C., USA.
  4. ASCE (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  5. Aydemir, M.E. and Aydemir, C. (2019), "Residual displacement estimation of simple structures considering soil structure interaction", Earthq. Struct., 16(1), 69-82. https://doi.org/10.12989/eas.2019.16.1.069.
  6. Bhandari, M., Bharti, S., Shrimali, M. and Datta, T. (2019), "Seismic fragility analysis of base-isolated building frames excited by near-and far-field earthquakes", J. Perform. Constr. Facil., 33(3), 04019029. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001298.
  7. Bilgin, H. and Hysenlliu, M. (2020), "Comparison of near and far-fault ground motion effects on low and mid-rise masonry buildings", J. Build. Eng., 30, 101248. https://doi.org/10.1016/j.jobe.2020.101248.
  8. Comartin, C., Niewiarowski, R. and Rojahn, C. (1996), "ATC-40 Seismic evaluation and retrofit of concrete buildings", SSC 96, 1(1), 1.
  9. Deoda, V.R. and Adhikary, S. (2020), "Use of Conditional mean spectra for seismic evaluation of RC building considering soil effects", Int. J. Civil Eng., 18, 1267-1280. https://doi.org/10.1007/s40999-020-00536-1.
  10. Forcellini, D. (2021), "Analytical fragility curves of shallow-founded structures subjected to soil-structure interaction (SSI) effects", Soil Dyn. Earthq. Eng., 141, 106487. https://doi.org/10.1016/j.soildyn.2020.106487.
  11. Forcellini, D. and Tarantino, A.M. (2014), "Assessment of stone columns as a mitigation technique of liquefaction-induced effects during Italian earthquakes (May 2012)", Sci. World J., 2014, 1. https://doi.org/10.1155/2014/216278.
  12. Gajan, S., Hutchinson, T.C., Kutter, B.L., Raychowdhury, P., Ugalde, J.A. and Stewart, J.P. (2008), Numerical Models for Analysis and Performance-Based Design of Shallow Foundations Subjected to Seismic Loading, Pacific Earthquake Engineering Research Center Berkeley, Berkeley, CA, USA.
  13. Gazetas, G. (1991), "Formulas and charts for impedances of surface and embedded foundations", J. Geotech. Eng., 117(9), 1363-1381. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1363).
  14. Gcr, N. (2012), "Soil-structure interaction for building structures", NIST GCR 12-917-21; National Institute of Standards and Technology (NEHRP), Gaithersburg, MD, USA.
  15. Hamidia, M., Shokrollahi, N. and Nasrolahi, M. (2021), "Soil-structure interaction effects on the seismic collapse capacity of steel moment-resisting frame buildings", Struct., 32, 1331-1345. https://doi.org/10.1016/j.istruc.2021.03.068.
  16. Kalkan, E. and Kunnath, S.K. (2008), "Relevance of absolute and relative energy content in seismic evaluation of structures", Adv. Struct. Eng., 11(1), 17-34. https://doi.org/10.1260/136943308784069469.
  17. Karapetrou, S., Fotopoulou, S. and Pitilakis, K. (2015), "Seismic vulnerability assessment of high-rise non-ductile RC buildings considering soil-structure interaction effects", Soil Dyn. Earthq. Eng., 73, 42-57. https://doi.org/10.1016/j.soildyn.2015.02.016.
  18. Katrangi, M., Memarpour, M.M. and Yakhchalian, M. (2022), "Assessment of the seismic performance and the base shear contribution ratios of the RC wall-frame dual system considering soil-structure interaction", J. Earthq. Eng., 26(10), 5290-5317. https://doi.org/10.1080/13632469.2021.1871678.
  19. Kumar, P. and Samanta, A. (2020), "Seismic fragility assessment of existing reinforced concrete buildings in Patna, India", Struct., 27, 54-69. https://doi.org/10.1016/j.istruc.2020.05.036.
  20. Kumbhojkar, K., Sharma, V., Shrimali, M., Bharti, S. and Datta, T. (2022), "Comparison between seismic performance of semi-integrated bridge and conventional bridge", ASPS Conference Proceedings, Rajasthan, India, December.
  21. Kupfer, H., Hilsdorf, H. and Rush, H. (1969), "Behaviour of concrete under compressive loading", J. Struct. Div., 95(12), 2543-2563. https://doi.org/10.1061/JSDEAG.0002424.
  22. Lowes, L.N., Mitra, N. and Altoontash, A. (2003), "A beam-column joint model for simulating the earthquake response of reinforced concrete frames", Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
  23. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "OpenSees command language manual", Pacif. Earthq. Eng. Res. (PEER) Cent., 264(1), 137-158.
  24. Mitropoulou, C.C., Kostopanagiotis, C., Kopanos, M., Ioakim, D. and Lagaros, N.D. (2016), "Influence of soil-structure interaction on fragility assessment of building structures", Struct., 6, 85-98. https://doi.org/10.1016/j.istruc.2016.02.005.
  25. Mortezaei, A. (2013), "Plastic hinge length of RC columns considering soil-structure interaction", Earthq. Struct., 5(6), 679-702. https://doi.org/10.12989/eas.2013.5.6.679.
  26. Noori, H., Memarpour, M., Yakhchalian, M. and Soltanieh, S. (2019), "Effects of ground motion directionality on seismic behavior of skewed bridges considering SSI", Soil Dyn. Earthq. Eng., 127, 105820. https://doi.org/10.1016/j.soildyn.2019.105820.
  27. Orozco, G. and Ashford, S. (2002), "Effects of large pulses on reinforced concrete bridge columns", PEER Report 23, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
  28. Pavel, F., Pricopie, A. and Nica, G. (2019), "Collapse assessment for a RC frame structure in Bucharest (Romania)", Int. J. Civil Eng., 17, 1373-1381. https://doi.org/10.1007/s40999-019-00398-2.
  29. Rajeev, P. and Tesfamariam, S. (2012), "Seismic fragilities of non-ductile reinforced concrete frames with consideration of soil structure interaction", Soil Dyn. Earthq. Eng., 40, 78-86. https://doi.org/10.1016/j.soildyn.2012.04.008.
  30. Rozinat, A. and Van der Aalst, W.M. (2008), "Conformance checking of processes based on monitoring real behavior", Inform. Syst., 33(1), 64-95. https://doi.org/10.1016/j.is.2007.07.001.
  31. SAC Joint Venture. Guidelines Development Committee, SAC Joint Venture, Structural Engineers Association of California, Applied Technology Council, & California Universities for Research in Earthquake Engineering (2000), Recommended seismic design criteria for new steel moment-frame buildings (Vol. 350), Federal Emergency Management Agency Washington, D.C., USA.
  32. Scott, B.D., Park, R. and Priestley, M.J. (1982), "Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates", J. Proc., 79(1), 13-27. https://doi.org/10.14359/10875.
  33. Sharma, T., Vijay, V., Sourabh, S., Bharti, M., Datta, S., Shrimali, S. and Datta, T. (2019), "Energy dissipation and seismic response evaluation of semi-rigid frames at various performance levels", 16th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Saint-Petersburg, Russia, July.
  34. Sharma, V., Bhandari, M., Shrimali, M. and Datta, T. (2022), "Numerical study of hybrid steel frames under far-field earthquakes", ASPS Conference Proceedings, Rajasthan, India, December.
  35. Sharma, V., Bhandari, M., Shrimali, M., Bharti, S. and Datta, T. (2023), "Seismic performance assessment of semi-rigid frames for different performance criteria", Proceedings of the Indian Structural Steel Conference 2020, Hyderabad, India, March.
  36. Sharma, V., Kumbhojkar, K., Shrimali, M., Bharti, S. and Datta, T. (2022), "Performance assessment of hybrid steel frames under near-field seismic excitations", ASPS Conference Proceedings, Rajasthan, India, December.
  37. Sharma, V., Shrimali, M., Bharti, S. and Datta, T. (2020), "Sensitivity of lateral load patterns on the performance assessment of semi-rigid frames", Technologies for Sustainable Development, CRC Press, London, UK.
  38. Sharma, V., Shrimali, M., Bharti, S. and Datta, T. (2021a), "Seismic energy loss in semi-rigid steel frames under near-field earthquakes", Recent Advances in Computational Mechanics and Simulations: Volume-I: Materials to Structures, Springer Singapore, Singapore.
  39. Sharma, V., Shrimali, M.K., Bharti, S.D. and Datta, T.K. (2020a), "Behavior of semi-rigid steel frames under near-and far-field earthquakes", Steel Compos. Struct., 34(5), 625-641. https://doi.org/10.12989/scs.2020.34.5.625.
  40. Sharma, V., Shrimali, M.K., Bharti, S.D. and Datta, T.K. (2020b), "Evaluation of responses of semi-rigid frames at target displacements predicted by the nonlinear static analysis", Steel Compos. Struct., 36(4), 399-415. https://doi.org/10.12989/scs.2020.36.4.399.
  41. Sharma, V., Shrimali, M.K., Bharti, S.D. and Datta, T.K. (2021b), "Seismic demand assessment of semi-rigid steel frames at different performance points", Steel Compos. Struct., 41(5), 713-730. https://doi.org/10.12989/scs.2021.41.5.713.
  42. Sharma, V., Shrimali, M.K., Bharti, S.D. and Datta, T.K. (2021c), "Seismic fragility evaluation of semi-rigid frames subjected to near-field earthquakes", J. Constr. Steel Res., 176, 106384. https://doi.org/10.1016/j.jcsr.2020.106384.
  43. Sharma, V., Vern, S., Shrimali, M., Bharti, S. and Datta, T. (2023), "Seismic behavior assessment of semi-rigid frame under near-field earthquakes", Proceedings of the Indian Structural Steel Conference 2020, Hyderabad, India, March.
  44. Somerville, P.G. (2005), "Engineering characterization of near fault ground motions", Proceedings of the New Zealand Society Earthquake Engineering Conference.
  45. Standard, A. (2011), Building Code Requirements for Structural Concrete (ACI 318-11), American Concrete Institute, Farmington Hills, MI, USA.
  46. Stewart, J.P., Chiou, S.J., Bray, J.D., Graves, R.W., Somerville, P.G. and Abrahamson, N.A. (2002), "Ground motion evaluation procedures for performance-based design" Soil Dyn. Earthq. Eng., 22(9-12), 765-772. https://doi.org/10.1016/S0267-7261(02)00097-0.
  47. Su, L., Wan, H.P., Dong, Y., Frangopol, D.M. and Ling, X.Z. (2019), "Seismic fragility assessment of large-scale pile-supported wharf structures considering soil-pile interaction", Eng. Struct., 186, 270-281. https://doi.org/10.1016/j.engstruct.2019.02.022.
  48. Vamvatsikos, D. and Cornell, C.A. (2002), "The incremental dynamic analysis and its application to performance-based earthquake engineering", Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, September.
  49. Vamvatsikos, D., Jalayer, F. and Cornell, C.A. (2003), "Application of incremental dynamic analysis to an RC-structure", Proceedings of the FIB Symposium on Concrete Structures in Seismic Regions, Athens, Greece, May.