• Title/Summary/Keyword: Flexible electronic device

Search Result 170, Processing Time 0.025 seconds

UPFC Device: Optimal Location and Parameter Setting to Reduce Losses in Electric-Power Systems Using a Genetic-algorithm Method

  • Mezaache, Mohamed;Chikhi, Khaled;Fetha, Cherif
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Ensuring the secure operation of power systems has become an important and critical matter during the present time, along with the development of large, complex and load-increasing systems. Security constraints such as the thermal limits of transmission lines and bus-voltage limits must be satisfied under all of a system’s operational conditions. An alternative solution to improve the security of a power system is the employment of Flexible Alternating-Current Transmission Systems (FACTS). FACTS devices can reduce the flows of heavily loaded lines, maintain the bus voltages at desired levels, and improve the stability of a power network. The Unified Power Flow Controller (UPFC) is a versatile FACTS device that can independently or simultaneously control the active power, the reactive power and the bus voltage; however, to achieve such functionality, it is very important to determine the optimal location of the UPFC device, with the appropriate parameter setting, in the power system. In this paper, a genetic algorithm (GA) method is applied to determine the optimal location of the UPFC device in a network for the enhancement of the power-system loadability and the minimization of the active power loss in the transmission line. To verify our approach, simulations were performed on the IEEE 14 Bus, 30 Bus, and 57 Bus test systems. The proposed work was implemented in the MATLAB platform.

Highly Flexible Piezoelectric Tactile Sensor based on PZT/Epoxy Nanocomposite for Texture Recognition (텍스처 인지를 위한 PZT/Epoxy 나노 복합소재 기반 유연 압전 촉각센서)

  • Yulim Min;Yunjeong Kim;Jeongnam Kim;Saerom Seo;Hye Jin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • Recently, piezoelectric tactile sensors have garnered considerable attention in the field of texture recognition owing to their high sensitivity and high-frequency detection capability. Despite their remarkable potential, improving their mechanical flexibility to attach to complex surfaces remains challenging. In this study, we present a flexible piezoelectric sensor that can be bent to an extremely small radius of up to 2.5 mm and still maintain good electrical performance. The proposed sensor was fabricated by controlling the thickness that induces internal stress under external deformation. The fabricated piezoelectric sensor exhibited a high sensitivity of 9.3 nA/kPa ranging from 0 to 10 kPa and a wide frequency range of up to 1 kHz. To demonstrate real-time texture recognition by rubbing the surface of an object with our sensor, nine sets of fabric plates were prepared to reflect their material properties and surface roughness. To extract features of the objects from the detected sensing data, we converted the analog dataset to short-term Fourier transform images. Subsequently, texture recognition was performed using a convolutional neural network with a classification accuracy of 97%.

Recent Progress in Energy Harvesters Based on Flexible Thermoelectric Materials (유연한 열전소재를 이용한 에너지 하베스터 연구개발 동향)

  • Park, Jong Min;Kim, Seoha;Na, Yujin;Park, Kwi-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.119-128
    • /
    • 2022
  • Recent advancement of Internet of Things (IoT) and energy harvesting technology enable realization of flexible thermoelectric energy harvester (f-TEH), with technological prowess for use in biomedical monitoring system integrated applications. To expand a flexible thermoelectric energy harvesting platform, the f-TEH must be required for optimized flexible thermoelectric materials and device structure. In response to these demands related to thermoelectric energy harvesting, many research groups have investigated various f-TEHs applied as a power source for wearable electronics. As a key member of the f-TEH, film-based f-TEHs possess significant applicability in research to realize self-powered wearable electronics, owing to their excellent flexibility, low thermal conductivity, and convenient fabrication process. Thus, based on the rapid growth of thermoelectric film technology, this review aims to overview comprehensively the f-TEH made of various inorganic/organic thermoelectric materials including developed fabrication methods, high thermoelectric performance, and wide-range applications.

The Effect of in situ Ultraviolet Irradiation on the Chemical Vapor Deposited ZnO Thin Films (증착 중 자외광 노광에 의한 산화 아연 박막의 특성 변화)

  • Kim, Bo-Seok;Baik, Seung Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.241-246
    • /
    • 2016
  • ZnO thin films have wide application areas due to its versatile properties as transparent conductors, wide-bandgap n-type semiconductors, gas sensor materials, and etc. We have performed a systematic investigation on ultraviolet-assisted CVD (chemical vapor deposition) method. Ultraviolet irradiation during the deposition of ZnO causes chemical reduction on the growing surface; which results in the reduction of the deposition rate, increase in the surface roughness, and decrease of the electrical resistivity. These effects produce larger characteristic variation with various deposition conditions in terms of surface morphology and optical/electrical properties compared to normal CVD deposited ZnO thin films. This versatile controllability of ultraviolet-assisted CVD can provide a larger processing options in the fabrication of nano-structured materials and flexible device applications.

Study on the Electrical Conduction Mechanism of Organic Light-Emitting Diodes (OLEDs) (유기발광소자(OLED)의 전기전도메커니즘에 대한 고찰)

  • Lee, Won Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.6-10
    • /
    • 2018
  • Organic light emitting devices have attracted the attention of many people because of their high potential for self-emission and flexible display devices. However, due to limitations in device efficiency and lifetime, partial commercialization is underway. In this paper, we have investigated the electrical conduction mechanism of the organic light emitting device by the temperature and the thickness of the light emitting layer through the current - voltage characteristics with respect to the conduction mechanism directly affecting the efficiency and lifetime of the organic light emitting device. Through the study, it was found that the conduction in the low electric field region is caused by the movement of the heat excited charge in the ohmic region and the tunneling of the electric charge due to the high electric field in the high electric field region.

Investigating the Effect of Photoinitiator Types and Contents on the Photocuring Behavior of Photocurable Inks and Their Applications for Etching Resist Inks (광개시제 종류 및 함량에 따른 광경화형 잉크의 광경화 특성과 인쇄회로기판용 에칭 레지스트 소재로의 적용성 연구)

  • Bo-Young Kim;Subin Jo;Gwajeong Jeong;Seong Dae Park;Jihoon Kim;Eui-Keun Choi;Myong Jae Yoo;Hyunseung Yang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.444-449
    • /
    • 2023
  • As electronic devices become smaller and more integrated, the demand for manufacturing thin, flexible printed circuit boards (FPCBs) has increased. Although FPCBs are conventionally manufactured by a photolithography method using dry film resist, this process is complicated, and the mask is specifically designed to obtain the precision of the desired circuit line width. In this regard, manufacturing FPCBs with fine patterns through the direct printing method of photocurable inks has gained growing attention. Since the manufacturing process of FPCBs is based on the direct printing method that includes etching and stripping processes utilizing acid and basic chemicals, controlling the adhesion strength, the etching resistance, and the strippability of photocured inks has drawn a lot of attention for the fabrication of fine patterns through photocurable inks. In this study, acrylic ink with various types and contents of the photoinitiator was prepared, and the curing behavior was analyzed. Also, the adhesion strength, etching resistance, and strippability were analyzed to evaluate the applicability of developed photocurable etching resist inks.

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

Transflective Liquid Crystal Display with High Aperture Ratio using Electrophoresis Particles

  • Cheong, Seung-Hwan;Bae, Kwang-Soo;Yu, Chang-Jae;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.166-168
    • /
    • 2009
  • We proposed a transflective liquid crystal display (LCD) with high aperture ratio using an electrophoretic particle layer (EPL). The transflective LCD consisted of the stacked LC layer and EPL which was acted as a switchable mirror under in-plane electrode structure. Without separation of reflective part and transmissive part in one pixel, a modeselectable display device can be obtained.

  • PDF

Surface assisted growth of CNTs and its applications

  • Jeon, Seok-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.5.2-5.2
    • /
    • 2009
  • Carbon based nanoelctronic materials such as buckyball, CNT, and graphene have been active field of research because of their superior electronic prperties and potential application to flexible electronics. Still the difficulty of fabrication and spatial control prevent them from practical applications. Here I introduce a novel growth method of CNTs, known as surface assisted growth, that can answer the challenge. Various device examples from as-grown CNTs will prove the importance of this method for future nanoelectronics.

  • PDF

Two-Dimensional Device Simulator TFT2DS for Hydrogenated Amorphous Silicon Thin Film Transistors (수소화된 비정질 실리콘 박막 트랜지스터의 이차원 소자 시뮬레이터 TFT2DS)

  • Choe, Jong-Seon;Neudeck, Gerold W.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Hyrdogenated amorphous silicon thin film transistors are used as a pixel switching device of TFT-LCDs and very active research works on a-Si:H TFTs are in progress. Further development of the technology based on a-Si:H TFTs depends on the increased understanding of the device physics and the ability to accurately simulate the characteristics of them. A two-dimensional device simulator based on the realistic and flexible physical models can guide the device designs and their optimizations. A non-uniform finite-difference TFT Simulation Program, TFT2DS has been developed to solve the electronic transport equations for a-Si:H TFTs. In TFT2DS, many of the simplifying assumptions are removed. The developed simulator was used to calculate the transfer and output characteristics of a-Si:H TFTs. The measured data were compared with the simulated ones for verifying the validity of TFT2DS. Also the transient behaviors of a-Si:H TFTs were calculated even if the values of the related parameters are not accurately specified.

  • PDF