DOI QR코드

DOI QR Code

The Effect of in situ Ultraviolet Irradiation on the Chemical Vapor Deposited ZnO Thin Films

증착 중 자외광 노광에 의한 산화 아연 박막의 특성 변화

  • Kim, Bo-Seok (Department of Electrical, Electronic, and Control Engineering, Hankyong National University) ;
  • Baik, Seung Jae (Department of Electrical, Electronic, and Control Engineering, Hankyong National University)
  • 김보석 (한경대학교 전기전자제어공학과) ;
  • 백승재 (한경대학교 전기전자제어공학과)
  • Received : 2016.03.16
  • Accepted : 2016.03.24
  • Published : 2016.04.01

Abstract

ZnO thin films have wide application areas due to its versatile properties as transparent conductors, wide-bandgap n-type semiconductors, gas sensor materials, and etc. We have performed a systematic investigation on ultraviolet-assisted CVD (chemical vapor deposition) method. Ultraviolet irradiation during the deposition of ZnO causes chemical reduction on the growing surface; which results in the reduction of the deposition rate, increase in the surface roughness, and decrease of the electrical resistivity. These effects produce larger characteristic variation with various deposition conditions in terms of surface morphology and optical/electrical properties compared to normal CVD deposited ZnO thin films. This versatile controllability of ultraviolet-assisted CVD can provide a larger processing options in the fabrication of nano-structured materials and flexible device applications.

Keywords

References

  1. A. Dev, A. Elshaer, and T. Voss, IEEE J. Selected Topics in Quantum Electronics, 17, 896 (2011). [DOI: http://dx.doi.org/10.1109/JSTQE.2010.2082506]
  2. F. S. Hickernell, Proc. IEEE, 64, 631 (1976). [DOI: http://dx.doi.org/10.1109/PROC.1976.10187]
  3. P. K. Samanta, S. Basak, and P. R. Chaudhuri, Materials Today, 14, 295 (2011). [DOI: http://dx.doi.org/10.1016/S1369-7021(11)70148-1]
  4. N. F. Foster, G.A. Rozgonyi, Appl. Phys Lett, 8, 221 (1966). [DOI: http://dx.doi.org/10.1063/1.1754565]
  5. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, and H. W. Schock, Thin Solid Films, 351, 247 (1999). [DOI: http://dx.doi.org/10.1016/S0040-6090(99)00085-1]
  6. C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, J. Appl. Phys., 95, 1911 (2004). [DOI: http://dx.doi.org/10.1063/1.1641524]
  7. B. Rech and H. Wagner, Appl. Phys. A, 69, 155 (1999). [DOI: http://dx.doi.org/10.1007/s003390050986]
  8. W. Kern and R. C. Heim, J. Electrochem. Soc., 117, 562 (1970). [DOI: http://dx.doi.org/10.1149/1.2407572]
  9. S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, and A. Shah, Sol. Energy Mater. & Sol. Cells, 86, 385 (2005). [DOI: http://dx.doi.org/10.1016/j.solmat.2004.08.002]
  10. S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, Thin Solid Films, 518, 2961 (2010). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.09.189]
  11. S. Y. Myong, K. S. Lim, Appl. Phys. Lett., 82, 3026 (2003). [DOI: http://dx.doi.org/10.1063/1.1571651]
  12. S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, and K. S. Lim, Appl. Phys. Lett., 70, 3516 (1997). [DOI: http://dx.doi.org/10.1063/1.119218]
  13. C. G. V. de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.85.1012]
  14. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Letters, 5, 1231 (2005). [DOI: http://dx.doi.org/10.1021/nl050788p]
  15. X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys., 95, 3141 (2004). [DOI: http://dx.doi.org/10.1063/1.1646440]
  16. P. K. Chakraborty, G. C. Datta, and K. P. Ghatak, Physica B: Condensed Matter, 339, 198 (2003). [DOI: http://dx.doi.org/10.1016/j.physb.2003.07.001]