• Title/Summary/Keyword: Flexible electronic device

Search Result 170, Processing Time 0.024 seconds

A Study on the Growth Temperature of Atomic Layer Deposition for Photocurrent of ZnO-Based Transparent Flexible Ultraviolet Photodetector (원자층 증착법의 성장온도에 따른 산화아연 기반 투명 유연 자외선 검출기의 광전류에 대한 연구)

  • Choi, Jongyun;Lee, Gun-Woo;Na, Young-Chae;Kim, Jeong-Hyeon;Lee, Jae-Eun;Choi, Ji-Hyeok;Lee, Sung-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.80-85
    • /
    • 2022
  • ZnO-based transparent conductive films have been widely studied to achieve high performance optoelectronic devices such as next generation flexible and transparent display systems. In order to achieve a transparent flexible ZnO-based device, a low temperature growth technique using a flexible polymer substrate is required. In this work, high quality flexible ZnO films were grown on colorless polyimide substrate using atomic layer deposition (ALD). Transparent ZnO films grown from 80 to 200℃ were fabricated with a metal-semiconductor-metal structure photodetectors (PDs). As the growth temperature of ZnO film increases, the photocurrent of UV PDs increases, while the sensitivity of that decreases. In addition, it is found that the response times of the PDs become shorter as the growth temperature increases. Based on these results, we suggest that high-quality ZnO film can be grown below 200℃ in an atomic layer deposition system, and can be applied to transparent and flexible UV PDs with very fast response time and high photocurrent.

A Study on the Impact Sensing Device for Improving the Firing Function Reliability of ESAF (ESAF의 기폭 신뢰성 향상을 위한 충격감지장치 연구)

  • Jo, Seyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.525-531
    • /
    • 2015
  • In this paper, a novel impact sensing device for an ESAF(Electronic Safe and Arming Fuze) is presented. An impact sensing device is mounted in front of a weapon, and it detects an impact when it crashes against a target. There are two main design requirements to enhance the firing functional reliability of the ESAF; an operational reliability and a reduced latency, which is a delay time needed for sensing the impact. The design method of the contact-type impact sensing device, which employs an FPCB(Flexible Printed Circuit Board) so it can be used other weapons, is proposed. The tests demonstrated that the design described in this work show a reduced delay time with ensuring the operational reliability.

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • Baek, Chung-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

Electrical characteristics of a ZnO nanowire-based Field Effect Transistor on a flexible plastic substrate (유연한 플라스틱 기판 위에서의 ZnO 나노선 FET소자의 전기적 특성)

  • Kang, Jeong-Min;Keem, Ki-Hyun;Youn, Chang-Jun;Yeom, Dong-Hyuk;Jeongm, Dong-Young;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.149-150
    • /
    • 2006
  • A ZnO nanowire-based FET is fabricated m this study on a flexible substrate of PES. For the flat and bent flexible substrates, the current ($I_D$) versus drain-source bias voltage ($V_{DS}$) and $I_D$ versus gate voltage ($V_G$) results are compared. The flat band was Ion/Ioff ratio of ${\sim}10^7$, a transconductance of 179 nS and a mobility of ~10.104 cm2/Vs at $V_{DS}$ =1 V. Also bent to a radius curvature of 0.15cm and experienced by an approximately strain of 0.77 % are exhibited an Ion/Ioff ratio of ${\sim}10^7$, a transconductance of ~179 nS and a mobility of ${\sim}10.10 cm^2/Vs$ at $V_{DS}$ = 1V. The electrical characteristics of the FET are not changed very much. although the large strain is given on the device m the bent state.

  • PDF

Electrical Properties and Reliability of CdS Thin Film Deposited by R.F. Sputtering (유연성 기판위에 스퍼터링 방법으로 증착한 CdS 박막의 전기적 특성 및 신뢰성 평가)

  • Hur, Sung-Gi;Hwang, Mi-Na;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.26-26
    • /
    • 2010
  • Cadmium sulfide (CdS) thin film for flexible optical device applications were prepared at $H_2(Ar+H_2)$ flow ratios on polyethersulfon(PES) flexible polymer substrates at room temperature by radio frequency magnetron sputtering technique. The CdS thin films deposited at room temperature showed a (002) preferred orientation and the smooth surface morphologies. Films deposited at a hydrogen flow ratio of 25% exhibited a photo- and dark-sheet resistance of about 50 and $2.7{\times}10^5{\Omega}$/square, respectively. From the result of the bending test, CdS films exhibit a strong adhesion with the PES polymer substrates and the $Al_2O_3$ passivation layer deposited on the CdS films only shows an increase of the resistance of 8.4% after exposure for 120 h in air atmosphere.

  • PDF

Polymer Encapsulation of $TiO_2$ Nanoparticle for Electronic Paper Device (Electronic Paper Device 적용을 위한 $TiO_2$ 나노입자의 폴리머 Encapsulation)

  • Kwon, S.H.;Kim, S.K.;Hong, W.S.;Ahn, J.H.;Kim, S.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.991-994
    • /
    • 2003
  • Electronic Paper용 무기소재로 $TiO_2$ 나노입자를 적용하기 위해서는 분산시 침전문제, 입자의 전기영동 속도향상을 위한 충분한 $\xi-potential$확보, 분산제 첨가시 안정적 결합을 위한 acidic site의 확보등의 문제가 해결되어야 한다. 이를 위해 저온균일침전법으로 $TiO_2$ 나노입자를 제조하였고, 폴리머 체인을 통하여 encapsulation하여 최적의 분산과 전기영동조건 확보를 위한 공정조건에 대해 연구하였다. 실험결과 다양한 분산매에 계면활성제를 1.0wt% 첨가시 유전율상수가 2.5인 분산매에서 가장 좋은 $\xi-potential$을 얻을 수 있었으며 이를 바탕으로 acidic site에 따른 폴리머 체인의 흡착실험 결과 pH $1{\sim}2$의 조건에서 제조된 $TiO_2$ 나노입자의 경우가 체인과의 흡착정도가 가장 좋아 분산특성을 향상시킬 수 있었다.

  • PDF

Fabrication of Flexible Micro LED for Beauty/Biomedical Applications (미용/의료용 유연 마이크로 발광 다이오드 디바이스 제작 공정)

  • Jae Hee Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.563-569
    • /
    • 2023
  • Micro light-emitting diodes (LEDs), with a chip size of 100 micrometers or less, have attracted significant attention in flexible displays, augmented reality/virtual reality (AR/VR), and bio-medical applications as next-generation light sources due to their outstanding electrical, optical, and mechanical performance. In the realm of bio-medical devices, it is crucial to transfer tiny micro LED chips onto desired flexible substrates with low precision errors, high speed, and high yield for practical applications on various parts of the human body, including someone's face and organs. This paper aims to introduce a fabrication process for flexible micro LED devices and propose micro LED transfer techniques for cosmetic and medical applications. Flexible micro LED technology holds promise for treating skin disorders, cancers, and neurological diseases.

The Structural and Optical Characteristics of Mg0.3Zn0.7O Thin Films Deposited on PES Substrate According to Oxygen Pressure (PES 기판 위에 증착된 Mg0.3Zn0.7O 박막의 산소압에 따른 구조 및 광학적 특성)

  • Lee, Hyun-Min;Kim, Sang-Hyun;Jang, Nakwon;Kim, Hong-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.760-765
    • /
    • 2014
  • MgZnO has attracted a lot of attention for flexible device. In the flexible substrate, the crystal structure of the thin films as well as the surface morphology is not good. Therefore, in this study, we studied on the effects of the oxygen pressure on the structure and crystallinity of $Mg_{0.3}Zn_{0.7}O$ thin films deposited on PES substrate by using pulsed laser deposition. We used X-ray diffraction and atomic force microscopy in order to observe the structural characteristics of $Mg_{0.3}Zn_{0.7}O$ thin films. The crystallinity of $Mg_{0.3}Zn_{0.7}O$ thin films with increasing temperature was improved, Grain size and RMS of the films were increased. UV-visible spectrophotometer was used to get the band gap energy and transmittance. $Mg_{0.3}Zn_{0.7}O$ thin films showed high transmittance over 90% in the visible region. As increased working pressure from 30 mTorr to 200 mTorr, the bandgap energy of $Mg_{0.3}Zn_{0.7}O$ thin film were decreased from 3.59 eV to 3.50 eV.

Interface Treatment Effect of High Performance Flexible Organic Thin Film Transistor (OTFT) Using PVP Gate Dielectric in Low Temperature (저온 공정 PVP게이트 절연체를 이용한 고성능 플렉서블 유기박막 트랜지스터의 계면처리 효과)

  • Yun, Ho-Jin;Baek, Kyu-Ha;Shin, Hong-Sik;Lee, Ga-Won;Lee, Hi-Deok;Do, Lee-Mi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.12-16
    • /
    • 2011
  • In this study, we fabricated the flexible pentacene TFTs with the polymer gate dielectric and contact printing method by using the silver nano particle ink as a source/drain material on plastic substrate. In this experiment, to lower the cross-linking temperature of the PVP gate dielectric, UV-Ozone treatment has been used and the process temperature is lowered to $90^{\circ}C$ and the surface is optimized by various treatment to improve device characteristics. We tried various surface treatments; $O_2$ Plasma, hexamethyl-disilazane (HMDS) and octadecyltrichlorosilane (OTS) treatment methods of gate dielectric/semiconductor interface, which reduces trap states such as -OH group and grain boundary in order to improve the OTFTs properties. The optimized OTFT shows the device performance with field effect mobility, on/off current ratio, and the sub-threshold slope were extracted as $0.63cm^2 V^{-1}s^{-1}$, $1.7{\times}10^{-6}$, and of 0.75 V/decade, respectively.

Phase Transition and Improvement of Output Efficiency of the PZT/PVDF Piezoelectric Device by Adding Carbon Nanotubes (Carbon Nanotube의 첨가에 의한 PZT/PVDF 압전소자의 상전이와 출력 효율 개선)

  • Lim, Youngtaek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.94-97
    • /
    • 2018
  • Lead zirconate titanate/poly-vinylidene fluoride (PZT/PVDF) piezoelectric devices were fabricated by incorporating carbon nanotubes (CNTs), for use as flexible energy harvesting devices. CNTs were added to maximize the formation of the ${\beta}$ phase of PVDF to enhance the piezoelectricity of the devices. The phase transition of PVDF induced by the addition of CNTs was confirmed by analyzing the X-ray diffraction patterns, scanning electron microscopy images, and atomic force microscopy images. The enhanced output efficiency of the PZT/PVDF piezoelectric devices was confirmed by measuring the output current and voltage of the fabricated devices. The maximum output current and voltage of the PZT/PVDF piezoelectric devices was 200 nA and 350 mV, respectively, upon incorporation of 0.06 wt% CNTs.