DOI QR코드

DOI QR Code

The Structural and Optical Characteristics of Mg0.3Zn0.7O Thin Films Deposited on PES Substrate According to Oxygen Pressure

PES 기판 위에 증착된 Mg0.3Zn0.7O 박막의 산소압에 따른 구조 및 광학적 특성

  • Lee, Hyun-Min (Division of Electrical and Electronics Engineering, Korea Maritime University) ;
  • Kim, Sang-Hyun (Division of Electrical and Electronics Engineering, Korea Maritime University) ;
  • Jang, Nakwon (Division of Electrical and Electronics Engineering, Korea Maritime University) ;
  • Kim, Hong-Seung (Department of Nano Semiconductor Engineering, Korea Maritime University)
  • 이현민 (한국해양대학교 전기전자공학부) ;
  • 김상현 (한국해양대학교 전기전자공학부) ;
  • 장낙원 (한국해양대학교 전기전자공학부) ;
  • 김홍승 (한국해양대학교 나노반도체공학과)
  • Received : 2014.09.19
  • Accepted : 2014.10.16
  • Published : 2014.11.01

Abstract

MgZnO has attracted a lot of attention for flexible device. In the flexible substrate, the crystal structure of the thin films as well as the surface morphology is not good. Therefore, in this study, we studied on the effects of the oxygen pressure on the structure and crystallinity of $Mg_{0.3}Zn_{0.7}O$ thin films deposited on PES substrate by using pulsed laser deposition. We used X-ray diffraction and atomic force microscopy in order to observe the structural characteristics of $Mg_{0.3}Zn_{0.7}O$ thin films. The crystallinity of $Mg_{0.3}Zn_{0.7}O$ thin films with increasing temperature was improved, Grain size and RMS of the films were increased. UV-visible spectrophotometer was used to get the band gap energy and transmittance. $Mg_{0.3}Zn_{0.7}O$ thin films showed high transmittance over 90% in the visible region. As increased working pressure from 30 mTorr to 200 mTorr, the bandgap energy of $Mg_{0.3}Zn_{0.7}O$ thin film were decreased from 3.59 eV to 3.50 eV.

Keywords

References

  1. Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, Appl. Phys. Lett., 74, 1177 (1999). https://doi.org/10.1063/1.123478
  2. J. Park, J. Hwang, D. Seo, S. Park, D. Moon, and J. Han, J. KIEEME, 16, 1115 (2003).
  3. W. W. Wensa, A. Yamada, K. Takahashi, M. Yoshino, and M. Konagai, J. Appl. Phys., 70, 7119 (1991). https://doi.org/10.1063/1.349794
  4. D. C. Look, Mater. Sci. Eng. B, 80, 383 (2001). https://doi.org/10.1016/S0921-5107(00)00604-8
  5. H. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys., 95, 1246 (2004). https://doi.org/10.1063/1.1633343
  6. Y. Chen, H. J. Ko, S. K. Hong, and T. Yao, Appl. Phys Lett., 76, 559 (2000). https://doi.org/10.1063/1.125817
  7. A. Ohotomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett., 72, 2466 (1998). https://doi.org/10.1063/1.121384
  8. Z. Vashaei, T. Minegishi, and T. Yao, J. Cryst. Growth, 306, 269 (2007). https://doi.org/10.1016/j.jcrysgro.2007.05.011
  9. S. W. Kang, Y. Y. Kim, C. H. Ahn, S. K. Mohanta, and H. K. Cho, J. Mater. Sci: Mater. Electron., 19, 755 (2008). https://doi.org/10.1007/s10854-007-9403-5
  10. S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schafer, Y. G. Sadofyev, and F. Henneberger, Appl. Phys. Lett., 87, 091903 (2005). https://doi.org/10.1063/1.2034113
  11. X. Chen and J. Kang, Semicond. Sci. Technol., 23, 025008 (2008). https://doi.org/10.1088/0268-1242/23/2/025008
  12. L. C. Ji, L. Huang, Y. Liu, Y. Q. Xie, F. Liu, A. Y. Liu, and W. Z. Shi, Thin Solid Films, 519, 3789 (2011). https://doi.org/10.1016/j.tsf.2010.12.243