• Title/Summary/Keyword: Flexible coupling

Search Result 188, Processing Time 0.029 seconds

A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Oh, Byung-Young;Lee, Sun-Sook;Yoon, Hyungwon;Cha, Seog-Ju;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.

A Study on Development the Dynamic Model to Misaligned Gear Coupling (I) - The Focus on Development of Dynamic Model to n Gear Coupling (정렬불량을 가진 기어 커플링의 동역학적 모델 개발에 관한 연구 (I) - 기어 커플링의 동적모델 구축을 중심으로-)

  • Kim, Byung-Ok;Kim, Yong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.857-863
    • /
    • 2003
  • In rotating machinery, unbalance and misalignment are major concerns in vibration. Unbalance can be eliminated by balancing procedure to some degree. but little work has been done on the vibrations that occur in a misaligned rotor system. Currently, no generalized theoretical model based on a rotor system with flexible coupling is available to describe the vibrations caused by misalignment. As a part of systematic investigation on the misalignment, first of all, the study on flexible coupling with misalignment should be preceded. In this study, the geometry and reaction force and moment of a gear coupling with misalignment was investigated, also the theoretical model of a gear coupling with misalignment was presented by using the relationship between geometry and moment of gear coupling. It is expected that the proposed procedure can be applied to derive the theoretical model of other couplings.

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.445-451
    • /
    • 2005
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.129-133
    • /
    • 2004
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.

  • PDF

Development of Flange Flexible Urethane-key Coupling (플랜지 플렉시블 우레탄카 커플링 개발)

  • Cho, Young-Tae;Lee, Ki-Yong;Lee, Choong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.667-671
    • /
    • 2010
  • The study was aimed at developing a power transmission coupling that is possible to transfer power without any trouble even if the two rotating shafts are making minute misalignment. The coupling that has been developed is Flange Flexible Urethane-key Coupling that connects two shafts by flanges with Urethane-key. A model coupling for use in transmitting power of 10hp was made and undergone performance evaluation and tests. Property and usefulness was proved through the test. The performance evaluation has demonstrated a property of $11.25Kgf{\cdot}m$ of allowable torque and 28.25hp of power at 1,80Orpm, which was found to be superior compared to the performance of similar couplings. Based on the performance test, study was made also for improving the shape of the Urethane-key and was successful to make the flange in smaller outside diameter. Further application test at site has proved that the product is easy to install and maintain, and has property of absorbing minute misalignment between two shafts and vibration caused there from.

Nonlinear Coupling Factor in Dynamic Model of Flexible Manipulator (유연 매니퓰레이터 동역학 모델링의 비선형 커플링 요소)

  • Lee Jin-Ho;Rhim Sung-Soo;Lee Soon-Geul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.404-408
    • /
    • 2005
  • Having flexibility in a manipulator will degrade trajectory tracking control and manipulator tip positioning. In practice, however, constraints imposed by various operating requirements, will render the presence of such flexibility unavoidable. The dynamic analysis of the flexible manipulator is essential in designing proper control systems. A flexible manipulator consists of infinite number of elastic modes and the modes are usually coupled to each other. For the practicality, however, it is usually assumed that the flexible system consists of finite number of elastic modes and the modes are decoupled. These assumptions result in a linear and decoupled mathematical model of the flexible manipulator and simplify the analysis of the dynamic behavior and the design of the control system. The decoupling and linearization of the flexible link, however, has been assumed without in depth analysis. This paper focuses on the analysis of the significance of the non-linear coupling factors.

  • PDF

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

Evaluation and improvement of the vibrational characteristics in the automotive exhaust system (자동차 배기계의 진동특성의 평가 및 개선에 관한 연구)

  • Park, H;Jeon, E. S.;Oh, J. E.;Lim, D. G.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.47-55
    • /
    • 1990
  • This study is the first step for the grasp of transfer path to the vibration generated from the automotive engine and consideration of counterplan for optimal design and low vibration, low noise of the exhaust system. In this study, by applying the theory of modal analysis and experiment, vibrational reduction effect is evaluated according to the attachment of flexible coupling to the exhaust system. And data for the design is suggested to improve the characteristics of vibration. The vibration isolation and damping characteristics are improved due to the attachment of flexible coupling to the exhaust system. As a result, it is identified that flexible coupling which has good flexibility is more effective for the improvement of vibrational characteristics. By the estimation of modeshape of vibration, the location of optimal damping hanger is determined in the viewpoint of vibration isolation. Also it is confirmed that the characteristics of vibration is improved due to the attachment of damping hanger.

  • PDF