• Title/Summary/Keyword: Flexible Membrane

Search Result 131, Processing Time 0.028 seconds

Effect of the Leading Edge and Vein Elasticity on Aerodynamic Performance of Flapping-Wing Micro Air Vehicles (날갯짓 초소형 비행체의 앞전 및 시맥 탄성이 공력 성능에 미치는 영향)

  • Yoon, Sang-Hoon;Cho, Haeseong;Shin, Sang-Joon;Huh, Seokhaeng;Koo, Jeehoon;Ryu, Jaekwan;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.185-195
    • /
    • 2021
  • The flapping-wing micro air vehicle (FW-MAV) in this study utilizes the cambered wings made of quite flexible material. Similar to the flying creatures, the present cambered wing uses three different materials at its leading edge, vein, and membrane. And it is constrained in various conditions. Since passive rotation uses the flexible nature of the wing, it is important to select an appropriate material for a wing. A three-dimensional fluid-structure interaction solver is developed for a realistic modeling of the cambered wing. Then a parametric study is conducted to evaluate the aerodynamic performance in terms of the elastic modulus of leading edge and vein. Consequently, the elastic modulus plays a key role in enhancing the aerodynamic performance of FW-MAVs.

Numerical formulation of a new solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating

  • Suarez-Suarez, Arturo;Dominguez-Ramírez, Norberto;Susarrey-Huerta, Orlando
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.439-458
    • /
    • 2022
  • Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-Of-Freedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.

Numerical formulation solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating

  • Arturo Suarez-Suarez;Norberto Dominguez-Ramirez;Orlando Susarrey-Huerta
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.481-501
    • /
    • 2023
  • Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-OfFreedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.

Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles

  • Jung, Hyun-Ho;Yang, Sung-Tae;Sim, Ji-Yeong;Lee, Seung-Kyu;Lee, Ju-Yeon;Kim, Ha-Hyung;Shin, Song-Yub;Kim, Jae-Il
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.362-368
    • /
    • 2010
  • Dermcidin is a human antibiotic peptide that is secreted by the sweat glands and has no homology to other known antimicrobial peptides. As an initial step toward understanding dermcidin's mode of action at bacterial membranes, we used homonuclear and heteronuclear NMR to determine the conformation of the peptide in 50% trifluoroethanol solution. We found that dermcidin adopts a flexible amphipathic $\alpha$-helical structure with a helix-hinge-helix motif, which is a common molecular fold among antimicrobial peptides. Spin-down assays of dermcidin and several related peptides revealed that the affinity with which dermcidin binds to bacterial-mimetic membranes is primarily dependent on its amphipathic $\alpha$-helical structure and its length (>30 residues); its negative net charge and acidic pI have little effect on binding. These findings suggest that the mode of action of dermcidin is similar to that of other membrane-targeting antimicrobial peptides, though the details of its antimicrobial action remain to be determined.

Pervaporation Separation of Trace Dicholoromethane from Water Using Fluorinated Polysiloxaneimide do Membranes (불소계 폴리실록산이미드 공중합체막을 이용한 저농도 Dichloromethane 수용액의 투과증발)

  • Kim, Jeong-Hoon;Chang, Bong-Jun;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.184-190
    • /
    • 2007
  • This study reports on the pervaporation separation of a volatile organic compound(VOC), dichloromethane(DCM) from water using fluorinated copolysiloxaneimide membranes. The copolysiloxaneimide membranes were prepared from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride(6FDA) and two diamines(polysiloxane diamine(SIDA), 2-(perfluorohexyl)ethyl-3,5-diaminobenzene(PFDAB)). By varying the ratio of flexible polysiloxane diamine(SIDA)/rigid fluorinated aromatic diamine(PFDAB) from 0/100 to 100/0 mol%, five copolysiloxaneimide membranes were prepared success- fully. The pervaporation properties of DCM/water were examined in terms of two diamine monomer ratio at room temperature and the feed composition of 0.05 wt% in water. It was found that the increase in SIDA content led to high permeation flux and pervaporation selectivity towards DCM by the enhanced sorption/sorption selectivity and diffusion coefficient/diffusion selectivity due to the increased hydrophobicity and fractional free volume.

Fabrication and Vibration Characterization of a Partially Etched-type Artificial Basilar Membrane

  • Kang, Hanmi;Jung, Youngdo;Kwak, Jun-Hyuk;Song, Kyungjun;Kong, Seong Ho;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.373-378
    • /
    • 2015
  • The structure of the human ear is divided into the outer ear, the middle ear, and the inner ear. The inner ear includes the cochlea that plays a very important role in hearing. Recently, the development of an artificial cochlear device for the hearing impaired with cochlear damage has been actively researched. Research has been carried out on the biomimetic piezoelectric thin film ABM (Artificial Basilar Membrane) in particular. In an effort to improve the frequency separation performance of the existing piezoelectric thin film ABM, this paper presents the design, fabrication, and characterization of the production and performance of a partially etched-type ABM material. $O_2$ plasma etching equipment was used to partially etch a piezoelectric thin film ABM to make it more flexible. The mechanical-behavior characterization of the manufactured partially etched-type ABM showed that the overall separation frequency range shifted to a lower frequency range more suitable for audible frequency bandwidths and it displayed an improved frequency separation performance. In addition, the maximum magnitude of the vibration displacement at the first local resonant frequency was enhanced by three times from 38 nm to 112 nm. It is expected that the newly designed, partially etched-type ABM will improve the issue of cross-talk between nearby electrodes and that the manufactured partially etched-type ABM will be utilized for next-generation ABM research.

Effects of Basalt Fiber on the Mechanical Properties of Secondary Barrier for LNG Cargo Containment System (현무암섬유를 이용한 LNG 화물창 2차 방벽의 기계적 특성에 대한 연구)

  • Woo-Seung Noh;Hae-Reum Shin;Seung-June Yeo;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • Recently, with the strengthening of environmental regulations, there has been an increasing interest in eco-friendly energy sources, leading to a trend of the increasing scale of Cargo Containment Systems (CCS) for Liquefied Natural Gas (LNG) carriers. Among these systems, membrane tanks have gained popularity in LNG transport vessels due to their superior spatial utilization and competitiveness. However, due to high initial investment costs and the difficulty in repair in case of damage, a safety layer, the secondary barrier, must be installed without fail. In this study, in order to apply a new secondary barrier to the existing membrane-type LNG CCS, tests were conducted on the fiberglass layer previously used in the Triplex-Flexible Secondary Barrier (FSB), substituting it with basalt fiber. Tensile and vertical tensile tests were performed to assess the newly applied material. Environmental tests were conducted at room temperature (25℃) and extremely low temperatures (-170℃), considering the temperatures to which substances may be exposed during LNG vessel operations. The basalt-FSB produced in this study demonstrated superior results compared to the specifications of the existing product, confirming its potential applicability for implementation.

Tertiary Structure of PreSl(21-47) of Hepatitis B Virus Studied by NMR Spectroscopy

  • Kyeunghee Yu;Cho, Eun-Wie;Shin, Song-Yub;Kim, Kol-Lyong;Kim, Yangmee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.41-49
    • /
    • 2000
  • To design more efficient peptide antagonist against the HBV, preSl(21-47) which carries the HBV receptor binding site for hepatocytes was synthesized and the solution structure of preSl(21-47) was investigated using CD spectroscopy and NMR spectroscopy in membrane-mimicking environments. According to CD spectra, preSl(21-47) has a random structure in aqueous solution, while conformational change was induced by addition of TFE and SDS micelle. Tertiary structures as determined by NMR spectroscopy shows that preSl(21-47) has a very flexible structure even in SDS micelle.

  • PDF

Shape Finding Analysis of Pneumatic Structure (공기막 구조물의 형상해석)

  • 권택진;서삼열;이장복
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.57-64
    • /
    • 1994
  • The purpose of this paper is to find minimum surface shape of pneumatic structure using the finite element method. The pneumatic membrane structure is a kind of large deformation problem and very flexible composite material, which mean geomatric nonlinearity. It is not to resist for compression and resultant moment. As the displacement due to internal pressure is getting bigger, it should be considered the direction of forces. It becomes non-linear problem with the non-conservative force. The follower-force depends on the deformation and the direction of force is normal to each element. The solution process is obtained the new stiffness matrix (load correction matrix) depending on deformation through each iterated step. However, the stiffness matrix have not the symmetry and influence on the time of covergence. So in this paper Newton-Rhapson method for solving non-linear problem and for using symmetic matrix, the load direction is changed in each iterated step using the transformation matrix.

  • PDF

Conformation of Substance P in Neutral Phospholipid Micelles

  • Kim, Seonggeum;Eunjung Bang;Kim, Yangmee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.1
    • /
    • pp.41-49
    • /
    • 1998
  • A linear undecapeptide, Substance P (SP) is involved in a wide variety of physiological processes such as pain, inflammation, salivation, and hypertension. Tertiary structure of SP in dodecylphosphocholine (DPC) micelles has been investigated by CD, NMR spectroscopy, and DGII calculation. CD spectrum of SP in the presence of 7.5 mM DPC micelles does not show any favorable secondary structure. The tertiary structure determined by NMR spectroscopy and DGII calculation shows that the Phe7-Phr8-Gly9-Leu10 region adopts a turn structure, while the N-terminal region is quite flexible. Both prolines in SP exist preferentially as the trans isoforms and the aromatic ring of Phe7 protrudes outward. Conformation of SP may be restrained by the contact of the Phe7 aromatic ring with the hydrophobic side chains of the DPC micelles and this interaction induces a turn structure. Structure of SP in aqueous solution in the presence of DPC micelles can represent a good model to study the conformation recognized by the receptor near neutral membrane.

  • PDF