• Title/Summary/Keyword: Flexible Displays

Search Result 236, Processing Time 0.025 seconds

Direct Fabrication of a-Si:H TFT Arrays on Flexible Substrates;Principal Manufacturing Challenges and Solutions

  • O’Rourke, Shawn M.;Loy, Douglas E.;Moyer, Curt;Ageno, Scott K.;O’Brien, Barry P.;Bottesch, Dirk;Marrs, Michael;Dailey, Jeff;Bawolek, Edward J.;Trujillo, Jovan;Kaminski, Jann;Allee, David R.;Venugopal, Sameer M.;Cordova, Rita;Colaneri, Nick;Raupp, Gregory B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.251-254
    • /
    • 2007
  • Principal challenges to $\underline{direct\;fabrication}$ of high performance a-Si:H transistor arrays on flexible substrates include automated handling through bonding-debonding processes, substrate-compatible low temperature fabrication processes, management of dimensional instability of plastic substrates, and planarization and management of CTE mismatch for stainless steel foils. Viable solutions to address these challenges are described.

  • PDF

Characteristics of Carbon Nanotube Anode for flexible displays and characteristics of OLEDs fabricated on Carbon Nanotube Anode (플렉시블 디스플레이용 CNT 애노드 특성 및 이를 이용하여 제작한 플렉시블 OLED 특성 분석)

  • Kim, Han-Ki;Jung, Jin-A;Moon, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.416-417
    • /
    • 2007
  • We prepared flexible transparent conducting electrodes by spray coating of single-walled carbon nanotube (SWNT) networks on PET substrate and have demonstrated their use as transparent anodes for flexible organic light emitting diodes (OLEDs). The flexible CNT electrode produced by spray coating method shows relatively low sheet resistance ($150{\sim}220{\Omega}/sq.$) and high transmittance of ~60% even though it was prepared at room temperature. In addition, CNT electrode/PET sample exhibits little resistance change during 2000 bending cycles, demonstrated good mechanical robustness. Using transparent CNT electrode, it is readily possible to achieve performances comparable to commercial ITO-based OLEDs. This indicates that flexible CNT electrode is alternative anode materials for conventional ITO anode in flexible OLEDs.

  • PDF

Flexible E-Paper Displays Using Low-Temperature Process and Printed Organic Transistor Arrays

  • Jin, Yong-Wan;Kim, Joo-Young;Koo, Bon-Won;Song, Byong-Gwon;Kim, Jung-Woo;Kim, Do-Hwan;Yoo, Byung-Wook;Lee, Ji-Youl;Chun, Young-Tea;Lee, Bang-Lin;Jung, Myung-Sup;Park, Jeong-Il;Lee, Sang-Yoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.431-433
    • /
    • 2009
  • We developed 4.8 inch WQVGA e-paper on plastic substrate using organic field effect transistors (OFETs). Polyethylene naphthalate (PEN) film was used as a flexible substrate and arrays of OFETs with bottom-gate, bottom-contact structure were fabricated on it. Lowtemperature curable organic gate insulating materials were employed and polymer semiconductor solutions were ink-jetted on arrays with high-resolution. At all steps, process temperature was limited below $130^{\circ}C$. Finally, we could drive flexible e-paper displays based on OFET arrays with the resolution of 100 dpi.

  • PDF

Evaluation of Residual Strains under Pure Bending Loading for Colorless and Optically Transparent Polyimide Film for Flexible Display (유연 디스플레이용 무색 투명 폴리이미드 필름의 굽힘 잔류 변형률 평가)

  • Choi, Min-Sung;Park, Min-Seok;Park, Han-Yeong;Oh, Chung-Seog
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.49-54
    • /
    • 2021
  • The display industry is transitioning from traditional rigid products such as flat panel displays to flexible or wearable ones designed to be folded or rolled. Accordingly, colorless and optically transparent polyimide (CPI) films are one of the prime candidates to substitute traditional cover glass as a passivation layer to accommodate product flexibility. However, CPI films subjected to repetitive pure bending loads inevitably entail an accumulation of residual strain that can eventually cause wrinkles or delamination in the underlying component after a certain number of static and cyclic loading. The purpose of this study is to establish an experimental method to systematically evaluate the bending residual strain of CPI films. Films were monotonically and cyclically wrapped on mandrels of various diameters to ensure a constant strain in each. After unwrapping the wound CPI film, the residual radius of curvature remaining on the film was measured and converted into residual strain. The critical radius of curvature at which residual strain does not remain was about 5 mm, and the residual strain decreased in proportion to the log time. It is expected that flexible displays can be reliably designed using the data between the applied bending strain and the residual strain.

Colloidal Self-Assembly Route to Flexible Cholesteric LCDs and Other High-Efficiency Displays

  • Chari, Krishnan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.63-66
    • /
    • 2006
  • We describe a unique process based on colloidal self-assembly that results in a uniform (almost hexagonally close-packed) layer of liquid crystal domains over large areas leading to single-substrate cholesteric LCDs with low switching voltages, excellent contrast, and high brightness. Extension to guest-host LCDs is also discussed.

  • PDF

Preparation and Property of Flexible/Stretchable Electrodes (유연성/신축성 전극의 제조 및 특성)

  • Lee, Gi-Bbeum;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.272-281
    • /
    • 2012
  • Flexible/stretchable electronics have recently focused, since their applications extend to emerging flexible displays, sensors, dielectric elastomer actuator and generators, and smart surgical tools. Flexible/stretchable electrodes should be synchronized with employing mechanical deformations of either flexing or stretching modes. Thus, the research area is one of the tough subjects, since the electrodes should keep their basic functions of electrodes under various mode of mechanical deformations. In this review, we discuss the recent development in the preparation and properties of such flexible/stretchable electrodes.

Printing Technologies for the Gate and Source/Drain Electrodes of OTFTs

  • Lee, Myung-Won;Lee, Mi-Young;Song, Chung-Kun
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.131-136
    • /
    • 2009
  • This is a report on the fabrication of a flexible OTFT backplane for electrophoretic display (EPD) using a printing technology. A practical printing technology for a polycarbonate substrate was developed by combining the conventional screen and inkjet printing technologies with the wet etching and oxygen plasma processes. For the gate electrode, the screen printing technology with Ag ink was developed to define the minimum line width of ${\sim}5{\mu}m$ and the thickness of ${\sim}70nm$ with the resistivity of ${\sim}10^{-6}{\Omega}{\cdot}cm$, which are suitable for displays with SVGA resolution. For the source and drain (S/D) electrodes, PEDOT:PSS, whose conductivity was drastically enhanced to 450 S/cm by adding 10 wt% glycerol, was adopted. In addition, the modified PEDOT:PSS could be neatly confined in the specific S/D electrode area that had been pretreated with oxygen. The OTFTs that made use of the developed printing technology produced a mobility of ${\sim}0.13cm^2/Vs.ec$ and an on/off current ratio of ${\sim}10^6$, which are comparable to those using thermally evaporated Au for the S/D electrode.

Characteristics of Amorphous IZO Anode Films for Polymer OLEDs Grown by Box Cathode Sputtering (박스 캐소드 스퍼터로 성장시킨 고분자 유기발광소자용 비정질 IZO 애노드 박막의 특성)

  • Moon Jong-Min;Bae Jung-Hyeok;Jung Soon-Wook;Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.552-557
    • /
    • 2006
  • Electrical, optical, surface, and structural properties of amorphous indium-zinc-oxide (a-IZO) grown by box cathode sputtering (BCS) were compared with crystalline indium-tin-oxide (c-ITO) anode films grown by conventional DC sputtering (DCS). Although x-ray diffraction plot of BCS-grown IZO film shows amorphous structure, the optical and electrical properties of a-IZO is comparable to those of c-ITO film. In particular, BCS-grown IZO films shows very smooth surface without defects such as pin hole and cracks because most of the energy of the sputtered atoms was confined in high density plasma region in box cathode gun. Furthermore polymer organic light emitting diodes (POLED) with the a-IZO anode film shows better electrical properties than that of POLED with the c-ITO anode film due to high work function and smooth surface of a-IZO. This suggested that BCS-grown a-IZO film is promising anode materials substituting conventional c-ITO anode in OLED and flexible displays.

Electrochromic Device for the Reflective Type Display Using Reversible Electrodeposition System

  • Kim, Tae-Youb;Cho, Seong M.;Ah, Chil Seong;Suh, Kyung-Soo;Ryu, Hojun;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.232.1-232.1
    • /
    • 2014
  • The green displays are the human friendly displays, the nature friendly displays, and the economical displays. Electrochromic displays are low cost and environmental devices because they do have more choice of colours and use much less power. The elements of the electrochromic devices consist of at least two conductors, an electrochromic material and an electrolyte. The optical properties were obtained using the optical contrast between the transparency of the substrate and the coloured state of the electrochromic materials. These devices can be fully flexible and printable. Due to the characteristics of the high coloration efficiency and memory effects, the electrochromic devices have been used in various applications such as information displays, smart windows, light shutters and electronic papers. Among these technical fields switchable mirrors have been received much attention in the applicative point of view of various electronic devices production. We have developed a novel silver (Ag) deposition-based electrochromic device for the reversible electrodeposition (RED) system. The electrochromic device can switch between transparent states and mirror states in response to a change in the applied voltage. The dynamic range of transmittance percent (%) for the fabricated device is about 90% at 550 nm wavelength. Also, we successfully fabricated the large area RED display system using the parted electrochromic cells of the honey comb structure.

  • PDF