• Title/Summary/Keyword: Flexible Cylinder

Search Result 61, Processing Time 0.02 seconds

Influnce Coefficient of Two-Plane Flexible Rotor Balancing Model Having a Rigid Cylinder (강체 원통을 중아에 갖는 2-보정면 탄성회전체 밸런싱 모델에서의 영향계수)

  • Jun, Oh Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.166-173
    • /
    • 1997
  • Influence coefficients on two-plane flexible rotor balancing model are derived by using the transfer matrix method. The model has a rigid uniform cylinder at mid-span of flexible shafts. Both faces of the rigid cylinder are used as the balancing planes. Calculated influence coefficients show that there exist the rotating speed ranges which are useless or insensitive for the balancing. Gyroscopic effect and damping are considered in the study and their effects are discussed.

  • PDF

Vortex-induced vibration characteristics of a low-mass-ratio flexible cylinder

  • Quen, Lee Kee;Abu, Aminudin;Kato, Naomi;Muhamad, Pauziah;Siang, Kang Hooi;Hee, Lim Meng;Rahman, Mohd Asamudin A
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.621-631
    • /
    • 2020
  • A laboratory experiment is conducted is to investigate the behaviour of a low-mass-ratio and high aspect ratio flexible cylinder under vortex-induced vibration (VIV). A flexible cylinder with aspect ratio of 100 and mass ratio of 1.17 is towed horizontally to generate uniform flow profile. The range of Reynolds number is from 1380 to 13800. Vibration amplitude, in-line and cross-flow frequency response, amplitude trajectory, mean tension variation and hydrodynamic force coefficients are analyzed based on the measurement from strain gauges, load cell and CCD camera. Experimental results indicate that broad-banded lock-in region is found for the cylinder with a small Strouhal number. The frequency switches in the present study indicates the change of the VIV phenomenon. The hydrodynamic force responses provide more understanding on the VIV of a low mass ratio cylinder.

A study on flexible manufacturing system for engine cylinder block (엔진 실린더 블럭 가공라인의 자동화 시스템에 관한 연구)

  • 전용철;윤병용;홍동표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.544-546
    • /
    • 1986
  • In this report, we have designed a Flexible Manufacturing System(FMS) for Engine-Cylinder block that is composed of maching center, special purpose machine, AGV(Automatic Guided Vehicle), using Micro-Computer and Programmable Controller(PC). From this report, we mostly present hardware features and scheduling software.

  • PDF

DNS of vortex-induced vibrations of a yawed flexible cylinder near a plane boundary

  • Zhang, Zhimeng;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.465-474
    • /
    • 2020
  • Vortex-induced vibrations of a yawed flexible cylinder near a plane boundary are numerically investigated at a Reynolds number Ren= 500 based on normal component of freestream velocity. Free to oscillate in the in-line and cross-flow directions, the cylinder with an aspect ratio of 25 is pinned-pinned at both ends at a fixed wall-cylinder gap ratio G/D = 0.8, where D is the cylinder diameter. The cylinder yaw angle (α) is varied from 0° to 60° with an increment of 15°. The main focus is given on the influence of α on structural vibrations, flow patterns, hydrodynamic forces, and IP (Independence Principle) validity. The vortex shedding pattern, contingent on α, is parallel at α=0°, negatively-yawed at α ≤ 15° and positively-yawed at α ≥ 30°. In the negatively- and positively-yawed vortex shedding patterns, the inclination direction of the spanwise vortex rows is in the opposite and same directions of α, respectively. Both in-line and cross-flow vibration amplitudes are symmetric to the midspan, regardless of α. The RMS lift coefficient CL,rms exhibits asymmetry along the span when α ≠ 0°, maximum CL,rms occurring on the lower and upper halves of the cylinder for negatively- and positively-yawed vortex shedding patterns, respectively. The IP is well followed in predicting the vibration amplitudes and drag forces for α ≤ 45° while invalid in predicting lift forces for α ≥ 30°. The vortex-shedding frequency and the vibration frequency are well predicted for α = 0° - 60° examined.

An Experimental Study. on Dynamic Characteristics of Submerged Co-axial Cylinderical Shells (수중 동축원통쉘 구조물의 경계조건 변화에 따른 동특성 시험)

  • 박진호;류정수;김태룡;심우건
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.668-674
    • /
    • 2001
  • An experimental study was performed for two types of co-axial cylindrical shell structures in order to establish the relationship between in-air dynamic characteristics and in-water ones and to observe hydrodynamic mass effects on their mode shapes when submerged. The outer cylinders are prepared with two kinds to get more insights on the fluid-structure interaction phenomena: one is flexible, which means that the outer cylinder has almost same stiffness as the inner one, and the other is a rigid one whose stiffness is more than ten times of the inner one's(it might be regarded as the scaled-down model of the reactor internals). The finite element. analyses were also implemented to support the experimental results. The results show that the natural frequencies of a co-axial cylindrical shell structure in water are remarkably lower than those in air due to the fluid mass effects. In case of the flexible-to-flexible cylinders, there exist in-phase and out-of-phase mode shapes and they are affected by the annular gap between the. co-axial cylinders. For the in-phase mode the in-water natural frequency decreases exponentially as the gap increases, while it slightly increases in case of the out-of-phase mode due to the squeezing effect of the gap fluid. In the flexible-to-rigid case, the normalized natural frequency(in-water frequency/in-air one) of the inner cylinder(core barrel model) ranges between in-phase and out-of-phase mode frequencies of the flexible-to-flexible co-axial cylindrical structure having identical dimensions. Also the normalized natural frequency of the inner cylinder of the flexible-to-rigid one moves from near of the in-phase mode frequency into the out-of-phase mode value of the flexible-to-flexible case as circumferential mode number(n) increases.

  • PDF

Vortex-induced vibration of a long flexible cylinder in uniform cross-flow

  • Ji, Chunning;Peng, Ziteng;Alam, Md. Mahbub;Chen, Weilin;Xu, Dong
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.267-277
    • /
    • 2018
  • Numerical simulations are performed of a long flexible cylinder undergoing vortex-induced vibration at a Reynolds number of 500. The cylinder is pinned at both ends, having an aspect ratio of 100 (cylinder length to cylinder diameter) and a mass ratio of 4.2 (structural mass to displaced fluid mass). Temporal and spatial information on the cross-flow (CF) and in-line (IL) vibrations is extracted. High modal vibrations up to the $6^{th}$ in the CF direction and the $11^{th}$ in the IL direction are observed. Both the CF and IL vibrations feature a multi-mode mixed pattern. Mode competition is observed. The $2^{nd}$ mode with a low frequency dominates the IL vibration and its existence is attributed to a wave group propagating back and forth along the span. Distributions of fluid force coefficients are correlated to those of the CF and IL vibrations along the span. Histograms of the x'-y motion phase difference are evaluated from the total simulation time and a complete vibration cycle representing the standing or travelling wave pattern. Correlations between the phase difference and the vibrations are discussed. Vortex structures behind the cylinder show an interwoven near-wake pattern when the standing wave pattern dominates, but an oblique near-wake pattern when the travelling wave pattern prevails.

Experimental and numerical investigation of the energy harvesting flexible flag in the wake of a bluff body

  • Latif, Usman;Abdullah, Chaudary;Uddin, Emad;Younis, M. Yamin;Sajid, Muhamad;Shah, Samiur Rehman;Mubasha, Aamir
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.279-292
    • /
    • 2018
  • Inspired by the energy harvesting eel, a flexible flag behind a D-shape cylinder in a uniform viscous flow was simulated by using the immersed boundary method (IBM) along with low-speed wind tunnel experimentation. The flag in the wake of the cylinder was strongly influenced by the vortices shed from the upstream cylinder under the vortex-vortex and vortex-body interactions. Geometric and flow parameters were optimized for the flexible flag subjected to passive flapping. The influence of length and bending coefficient of the flexible flag, the diameters (D) of the cylinder and the streamwise spacing between the cylinder and the flag, on the energy generation was examined. Constructive and destructive vortex interaction modes, unidirectional and bidirectional bending and the different flapping frequency were found which explained the variations in the energy of the downstream flag. Voltage output and flapping behavior of the flag were also observed experimentally to find a more direct relationship between the bending of the flag and its power generation.

Dynamic Stability Analysis of Annular Cylindrical Fuel Rod in Axial Flow (축류에 놓인 환형 실린더 연료봉의 동적 안정성 기초해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Lee, Young-Ho;Kim, Jae-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.264-267
    • /
    • 2008
  • Dual-cooled fuel with inner and outer flow channel was proposed for high burup, next generation nuclear fuel design. The annular cylinder of dual cooled fuel has higher structural strength compared to the conventional one, but also have concerns about flow induced vibration due to an additional flow of inner channel and the difference of flow velocity in between inner and outer channel. In this study, the dynamic stability of flexible, annular cylinder was evaluated according to the flow variation and compared to the that of the conventional PWR fuel rod. Centrifugal and Coriolis force by the additional flow in the inner channel were added in the dynamic equation of flexible beam in uniform, external, and axial flow. Complex eigenfrequency was calculated by the finite element method. Stability margin of annular cylinder compared to the solid cylinder and change of the dynamic characteristic are presented and discussed as a analysis results.

  • PDF

SIMULATION OF ENERGY HARVESTING EEL BY THE IMMERSED BOUNDARY METHOD

  • Jung, Ki-Sung;Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.197-203
    • /
    • 2008
  • In the present study, we carry out numerical simulations of energy harvesting eel by using the immersed boundary method. Eel is modeled by a flexible filament and is placed behind a circular cylinder. We perform systematic simulations in order to explore the effects of Reynolds number. The instantaneous eel motion is analyzed under different conditions and surrounding vortical structures are identified. The flapping frequency of eel has been compared with that in case of plate alone as well as filament alone. As increasing Reynolds number, we can see that the flexible filament flaps passively by obtaining the Strouhal number of cylinder alone and filament with cylinder.

  • PDF

SIMULATION OF ENERGY HARVESTING EEL BY THE IMMERSED BOUNDARY METHOD

  • Jung, Ki-Sung;Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.197-203
    • /
    • 2008
  • In the present study, we carry out numerical simulations of energy harvesting eel by using the immersed boundary method. Eel is modeled by a flexible filament and is placed behind a circular cylinder. We perform systematic simulations in order to explore the effects of Reynolds number. The instantaneous eel motion is analyzed under different conditions and surrounding vortical structures are identified. The flapping frequency of eel has been compared with that in case of plate alone as well as filament alone. As increasing Reynolds number, we can see that the flexible filament flaps passively by obtaining the Strouhal number of cylinder alone and filament with cylinder.

  • PDF