Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Assi, G.R.S., Bearman, P.W., Carmo, B., Meneghini, J., Sherwin, S. and Willden, R. (2013), "The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair", J. Fluid Mech., 718, 210-245. https://doi.org/10.1017/jfm.2012.606
- Bourguet, R., Karniadakis, G.E. and Triantafyllou, M.S. (2011), "Vortex-induced vibrations of a long flexible cylinder in shear flow", J. Fluid Mech., 677, 342-382. https://doi.org/10.1017/jfm.2011.90
- Bourguet, R. and Jacono, D. (2014), "Flow-induced vibrations of a rotating cylinder", J. Fluid. Mech., 740, 342-380. https://doi.org/10.1017/jfm.2013.665
- Brika, D. and Laneville, A. (1993), "Vortex-induced vibrations of a long flexible circular cylinder", J. Fluid Mech., 250, 481-508. https://doi.org/10.1017/S0022112093001533
- Chaplin, J.R., Bearman, P.W., Huera-Huarte, F.J. and Pattenden, R.J. (2005), "Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current", J Fluid. Struct., 21(1), 3-24. https://doi.org/10.1016/j.jfluidstructs.2005.04.010
- Chen, W., Ji, C., Xu, W., Liu, S. and Campbell, J. (2015a), "Response and wake patterns of two side-by-side elastically supported circular cylinders in uniform laminar cross-flow", J Fluid. Struct., 55, 218-236. https://doi.org/10.1016/j.jfluidstructs.2015.03.002
- Chen, W., Ji, C., Wang, R., Xu, D. and Campbell, J. (2015a), "Flow-induced vibrations of two side-by-side circular cylinders: Asymmetric vibration, symmetry hysteresis and near-wake patterns", Ocean Eng., 110, 244-257. https://doi.org/10.1016/j.oceaneng.2015.10.028
- Huera-Huarte, F.J. and Bearman, P.W. (2009a), "Wake structures and vortex-induced vibrations of a long flexible cylinder-part 1: Dynamic response", J. Fluid. Struct., 25(6), 969-990. https://doi.org/10.1016/j.jfluidstructs.2009.03.007
- Huera-Huarte, F.J. and Bearman, P.W. (2009b), "Wake structures and vortex-induced vibrations of a long flexible cylinder-part 2: Drag coefficients and vortex modes", J. Fluid. Struct., 25(6), 991-1006. https://doi.org/10.1016/j.jfluidstructs.2009.03.006
- Jauvtis, N. and Williamson, C.H.K. (2004), "The effect of two degrees of freedom on vortex-induced vibration at low mass and damping", J. Fluid Mech., 509, 23-62. https://doi.org/10.1017/S0022112004008778
- Ji. C., Munjiza, A. and Williams, J.J.R. (2012), "A novel iterative direct-forcing immersed boundary method and its finite volume applications", J. Comput. Phys., 231(4), 1797-1821. https://doi.org/10.1016/j.jcp.2011.11.010
- Kim, S. and Alam, M.M. (2015), "Characteristics and suppression of flow-induced vibrations of two side-by-side circular cylinders", J. Fluid. Struct., 54, 629-642. https://doi.org/10.1016/j.jfluidstructs.2015.01.004
- Lucor, D., Mukundan, H. and Triantafyllou, M.S. (2006), "Riser modal identification in CFD and full-scale experiments", J Fluid. Struct., 22, 905-917. https://doi.org/10.1016/j.jfluidstructs.2006.04.006
- Newman, D.J. and Karniadakis, G.E. (1997), "A direct numerical simulation study of flow past a freely vibrating cable", J. Fluid Mech., 344, 95-136. https://doi.org/10.1017/S002211209700582X
- Peskin, C.S. (1972), "Flow patterns around heart valves: A numerical method", J. Comput. Phys., 10(2), 252-271. https://doi.org/10.1016/0021-9991(72)90065-4
- Peskin, C.S. (2002), "The immersed boundary method", Acta Numerica, 11, 479-517.
- Qin, B., Alam, M.M. and Zhou, Y. (2017), "Two tandem cylinders of different diameters in crossflow: flow-induced vibration", J Fluid Mech., 829, 629-658.
- Sarpkaya, T., (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", J. Fluid. Struct., 19, 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005
- Shen, L., Chan, E-S. and Lin, P. (2009), "Calculation of hydrodynamic forces acting on a submerged moving object using immersed boundary method", Comput. Fluids, 38, 691-702. https://doi.org/10.1016/j.compfluid.2008.07.002
- Shiels, D., Leonard, A. and Roshko, A. (2001), "Flow-induced vibration of a circular cylinder at limiting structural parameters", J. Fluid. Struct., 15, 3-21. https://doi.org/10.1006/jfls.2000.0330
- Vandiver, J.K. (1993), "Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents", J. Fluid. Struct., 7(5), 423-455. https://doi.org/10.1006/jfls.1993.1028
- Vandiver, J.K. Jaiswal, V. and Jhingran, V. (2009), "Insights on vortex-induced, traveling waves on long risers", J. Fluid. Struct., 25(4), 641-653. https://doi.org/10.1016/j.jfluidstructs.2008.11.005
- Van der Vorst, H.A. (1992), "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems", SIAM J. Sci. and Stat. Comput., 13(2), 631-644. https://doi.org/10.1137/0913035
- Williamson, C.H.K. and Roshko, A. (1988), "Vortex formation in the wake of an oscillating cylinder", J Fluid. Struct., 2(4), 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8
- Williamson, C.H.K. and Govardhan, R. (2004), "Vortex-induced vibrations", Annu. Rev. Fluid Mech., 36, 413-455. https://doi.org/10.1146/annurev.fluid.36.050802.122128
- Williamson, C.H.K. and Govardhan, R. (2008), "A brief review of recent results in vortex-induced vibrations", J. Wind Eng. Ind. Aerod., 96, 713-735. https://doi.org/10.1016/j.jweia.2007.06.019
- Wu, X.D., Ge, F. and Hong, Y.S. (2012), "A review of recent studies on vortex-induced vibrations of long slender cylinders", J. Fluid. Struct., 28, 292-308. https://doi.org/10.1016/j.jfluidstructs.2011.11.010
Cited by
- Vortex induced vibration analysis of a cylinder mounted on a flexible rod vol.29, pp.6, 2019, https://doi.org/10.12989/was.2019.29.6.441
- A review on flow-induced vibration of offshore circular cylinders vol.32, pp.3, 2018, https://doi.org/10.1007/s42241-020-0032-2
- Comparison of Two-Dimensional and Three- Dimensional Responses for Vortex-Induced Vibrations of a Rectangular Prism vol.10, pp.22, 2018, https://doi.org/10.3390/app10227996