Acknowledgement
This research was financially supported by Japan International Cooperation Agency under grant (S.K130000.0543.4Y191) and Universiti Teknologi Malaysia research grant (R.K130000.7343.4B362)
References
- Aguirre, J.E. (1978), "Flow Induced, In-line Vibrations of a Circular Cylinder". Ph.D. Dissertation, Imperial College of Science and Technology, London, United Kingdom.
- Assi, G.R.S. (2009), "Mechanisms for flow-induced vibration of interfering bluff bodies". Ph.D. Dissertation, Imperial College, London, United Kingdom.
- Baarholm, G.S., Larsen, C.M. and Lie, H. (2006), "On fatigue damage accumulation from in-line and cross-flow vortexinduced vibrations on risers", J. Fluids Struct., 22, 109-127. https://doi.org/10.1016/j.jfluidstructs.2005.07.013
- Bearman, P.W. (2011), "Circular cylinder wakes and vortexinduced vibrations", J. Fluids Struct., 27, 648-658. https://doi.org/10.1016/j.jfluidstructs.2011.03.021
- Blevins, R.D. and Coughran, C.S. (2009), "Experimental Investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number", J. Fluids Eng., 131, 10, 101202. https://doi.org/10.1115/1.3222904.
- Boom, H.J.J. and Walree, F. (1990), "Hydrodynamic aspects of flexible risers", Offshore Technology Conference (OTC), Houston, Texas, May.
- Brankovic, M., and Bearman, P. (2006), "Measurements of transverse forces on circular cylinders undergoing vortexinduced vibration", J. Fluids. Struct., 22(6), 829-836. https://doi.org/10.1016/j.jfluidstructs.2006.04.022.
- Chaplin, J.R., Bearman, P.W., Huara Huarte, F.J. and Pattenden, R.J. (2005), "Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current", J. Fluids Struct. 21, 3-24. https://doi.org/10.1016/j.jfluidstructs.2005.04.010
- Chen, W., Ji, C., Mahbub Alam, M. and Xu, D. (2019), "Flowinduced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow", Wind Struct., 29, 43-53. https://doi.org/10.12989/was.2019.29.1.043.
- Currie, I.G. and Turnbull, D.H. (1987), "Streamwise oscillations of cylinders near the critical Reynolds number". J. Fluids Struct., 1, 185-196. https://doi.org/10.1016/S0889-9746(87)90331-8.
- Dahl, J.M., Hover, F.S. and Triantafyllou, M.S. (2006), "Twodegree-of-freedom vortex-induced vibrations using a force assisted apparatus", J. Fluids Struct., 22, 807-818. https://doi.org/10.1016/j.jfluidstructs.2006.04.019.
- Dahl, J.M., Hover, F.S., Triantafyllou, M.S., Dong, S. and Karniadakis, G.E. (2007), "Resonant vibrations of bluff bodies cause multi-vortex shedding", Physic Rev. Lett., 99, 144503. https://doi.org/10.1103/PhysRevLett.99.144503.
- Dahl, J.J.M. (2008), "Vortex-induced vibration of a circular cylinder with combined in-line and cross-flow motion", Ph.D. Dissertation, Massachusetts Institute of Technology, USA.
- Dahl, J.M., Hover, F.S., Triantafyllou, M.S. and Oakley, O.H. (2010), "Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds number", J. Fluid Mech., 643, 395-424. https://doi.org/10.1017/S0022112009992060.
- Feng, C.C. (1968), "The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders", M.Sc. Dissertation, Department of Mechanical Engineering, The University of British Columbia, Canada.
- Gabbai, R.D. and Benaroya, H. (2005), "An overview of modeling and experiments of vortex-induced vibration of circular cylinders", J. Sound Vib., 282, 575-616. https://doi.org/10.1016/j.jsv.2004.04.017.
- Gonalves, R.T., Rosetti, G.F., Franzini, G.R., Meneghini, J.R., Fujarra, A.L.C. (2013), "Two-degree-of-freedom vortex-induced vibration of circular cylinders with very low aspect ratio and small mass ratio", J. Fluids Struct., 39, 237-257. https://doi.org/10.1016/j.jfluidstructs.2013.02.004
- Govardhan, R. and Williamson, C.H.K. (2000), "Modes of vortex formation and frequency response of a freely vibrating cylinder", J. Fluid Mech., 420, 85-130. https://doi.org/10.1017/S0022112000001233.
- Han, Q., Ma, Y., Xu, W., Lu, Y. and Cheng, A. (2017), "Dynamic characteristics of an inclined flexible cylinder undergoing vortex-induced vibrations", J. Sound Vib., 394, 306-320. https://doi.org/10.1016/j.jsv.2017.01.034.
- Huera Huarte, F.J. (2006), "Multi-mode vortex-induced vibrations of a flexible circular cylinder", Ph.D. Dissertation, Department of Aeronautics, Imperial College London, United Kingdom.
- Huera-Huarte, F.J. and Bearman, P.W. (2009), "Wake structures and vortex-induced vibrations of a long flexible cylinder-Part 2: Drag coefficients and vortex modes", J. Fluids Struct., 25, 991-1006. https://doi.org/10.1016/j.jfluidstructs.2009.03.006
- Huera-Huarte, F.J., Bangash, Z.A., Gonzalez, L.M. (2014), "Towing tank experiments on the vortex-induced vibrations of low mass ratio long flexible cylinders", J. Fluids Struct., 48, 81-92. https://doi.org/10.1016/j.jfluidstructs.2014.02.006.
- Huse, E., Nielsen, F.G. and Soreide, T. (2002), "Coupling between in-line and transverse VIV response", ASME 21st International Conference on Offshore Mechanics and Arctic Engineering OMAE2002-28618, Oslo, Norway, June.
- Jauvtis, N. and Williamson, C.H.K. (2003), "Vortex-induced vibration of a cylinder with two degrees of freedom", J. Fluids Struct., 17, 1035-1042. https://doi.org/10.1016/S0889-9746(03)00051-3.
- Jauvtis, N. and Williamson, C.H.K. (2004), "The effect of two degrees of freedom on vortex-induced vibration at low mass and damping", J. Fluid Mech., 509, 23-62. https://doi.org/10.1017/S0022112004008778
- Jeong, Y., Park, M. and You, Y. (2016), "Experimental study on wave forces to offshore support structures", Struct. Eng. Mech., Vol. 60, 193-209. https://doi.org/10.12989/sem.2016.60.2.193
- Jus, Y., Longatte, E., Chassaing, J.C. and Sagaut, P. (2014), "Low Mass-Damping Vortex-Induced Vibrations of a Single Cylinder at Moderate Reynolds Number", J. Press Vessel Technol., 136(5), 0513051-513057. https://doi.org/10.1115/1.4027659.
- Ji, C., Peng, Z., Mahbub Alam, M., Chen, W. and Xu, D. (2018), "vortex-induced vibration of a long flexible cylinder in uniform cross-flow", Wind Struct., 26, 267-277. https://doi.org/10.12989/was.2018.26.5.267
- Kang, H.S., Kim, M.H., Aramanadka, S.S.B., Kang, H.Y. and Lee, K.Q. (2017), "Suppression of tension variations in hydropneumatic riser tensioner by using force compensation control", Ocean Syst. Eng., 7, 225-246. https://doi.org/10.12989/ose.2017.7.3.225
- Khalak, A. and Williamson, C.H.K. (1997), "Fluid forces and dynamics of a hydroelastic structure with very low mass and damping", J. Fluids Struct., 11, 973-982. https://doi.org/10.1006/jfls.1997.0110
- Khalak, A. and Williamson, C.H.K. (1999), "Motions, forces and mode transitions in vortex-induced vibrations at low massdamping", J. Fluids Struct., 13, 813-851. https://doi.org/10.1006/jfls.1999.0236
- Kim, D.K., Choi, H.S., Shin, C.S., Liew, M.S., Yu, S.Y. and Park, K.S. (2015), "Fatigue performance of deepwater SCR under short-term VIV considering various S-N curves", Struct. Eng. Mech., 53, 881-896. https://doi.org/10.12989/sem.2015.53.5.881.
- Korkischko, I. and Meneghini, J.R. (2010), "Experimental investigation of flow-induced vibration on isolated and tandem circular cylinders fitted with strakes", J. Fluids Struct., 26, 611-625. https://doi.org/10.1016/j.jfluidstructs.2010.03.001
- Kuiper, G.L. (2008), "Stability of offshore risers conveying fluid", Ph.D. Dissertation, Delft, Eburon Uitgeverij.
- Lee, K.Q., Abu, A. and Muhamad, P. (2013), "Investigation of wide range of flow around circular cylinder using turbulence model", Adv. Mater. Res., 664, 878-883. https://doi.org/10.4028/www.scientific.net/AMR.664.878.
- Marcollo, H. and Hinwood, J.B. (2006), "On shear flow single mode lock-in with both cross-flow and in-line lock-in mechanisms", J. Fluids Struct., 22, 197-211. https://doi.org/10.1016/j.jfluidstructs.2005.10.001.
- Naomi Kato (1982), "A study on separated flows behind bluff bodies by inviscid vortex models (2nd report)", J. Soc. Naval Architects Japan, 151, 15-22. https://doi.org/10.2534/jjasnaoe1968.1982.15.
- Norberg, C. (2001), "Flow around a circular cylinder: Aspects of fluctuating lift", J. Fluids Struct., 15, 459-469. https://doi.org/10.1006/jfls.2000.0367.
- Norberg, C. (2003), "Fluctuating lift on a circular cylinder: review and new measurements", J. Fluids Struct., 17, 57-96. https://doi.org/10.1016/S0889-9746(02)00099-3.
- Quen, L.K., Abu, A., Kato, N., Muhamad, P., Sahekhaini, A., Abdullah, H. (2014), "Investigation on the effectiveness of helical strakes in suppressing VIV of flexible riser", Appl. Ocean Res., 44, 82-91. https://doi.org/10.1016/j.apor.2013.11.006.
- Rahman, M.A, Leggoe, J., Thiagarajan, K., Mohd, M.H. and Paik, J.K. (2016), "Numerical simulations of vortex-induced vibrations on vertical cylindrical structure with different aspect ratios", Ships Offshore Struct., 11(4), 405-423. https://doi.org/10.1080/17445302.2015.1013783.
- Roshko, A. (1961), "Experiments on the flow past a circular cylinder at very high Reynolds number", J. Fluid Mech., 10(3), 345-356. http://dx.doi.org/10.1017/S0022112061000950.
- Roshko, A. (1993), "Perspectives on bluff body aerodynamics", J. Wind Eng. Industrial Aerodynam., 49, 79-100. https://doi.org/10.1016/0167-6105(93)90007-B.
- Sanaati, B. (2012), "An experimental study on the VIV hydrodynamics of pre-tensioned flexible cylinders with single and multiple configurations", Ph.D. Dissertation, Osaka University, Japan.
- Sanaati, B. and Kato, N. (2012), "A study on the effects of axial stiffness and pre-tension on VIV dynamics of a flexible cylinder in uniform cross-flow", Appl. Ocean Res., 37, 198-210. https://doi.org/10.1016/j.apor.2012.05.001.
- Sanchis, A., Sælevik, G. and Grue, J. (2008), "Two-degree-offreedom vortex-induced vibrations of a spring-mounted rigid cylinder with low mass ratio", J. Fluids Struct., 24, 907-919. https://doi.org/10.1016/j.jfluidstructs.2007.12.008.
- Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", J. Fluids Struct., 19, 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005.
- Song, L., Fu, S., Dai, S., Zhang, M. and Chen, Y. (2016), "Distribution of drag force coefficient along A flexible riser undergoing VIV in sheared flow", Ocean Eng., 126, 1-11. https://doi.org/10.1016/j.oceaneng.2016.08.022.
- Vandiver, J.K. (1983), "Drag coefficients of long flexible cylinders", Offshore Technology Conference, Texas, USA, May.
- Vandiver, J.K. (1993), "Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents", J. Fluids Struct. 7, 292-308. https://doi.org/10.1006/jfls.1993.1028.
- Vandiver, J. K. (1998), "Research challenges in the vortex-induced vibration prediction of marine risers", Offshore Technology Conference (OTC), Houston, USA, May.
- Vandiver, J.K., Jaiswal, V. and Jhingran, V. (2009), "Insights on vortex-induced, travelling waves on long risers", J. Fluids Struct. 25, 641-653. https://doi.org/10.1016/j.jfluidstructs.2008.11.005.
- Vikestad, K., Vandiver, J.K. and Larsen, C.M. (2000), "Added mass and oscillation frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance", J. Fluids Struct., 14, 1071-1088. https://doi.org/10.1006/jfls.2000.0308.
- Williamson, C.H.K. and Roshko, A. (1988), "Vortex formation in the wake of an oscillating cylinder", J. Fluids Struct., 2, 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8.
- Williamson, C.H.K. and Govardhan, R. (2008), "A brief review of recent results in vortex-induced vibrations", J. Wind Eng. Industrial Aerodynam., 96, 713-735. https://doi.org/10.1016/j.jweia.2007.06.019
- Wu, J., Lie, H., Larsen, CM., Liapis, S. and Baarholm, R. (2016), "Vortex-induced vibration of a flexible cylinder: Interaction of the in-line and cross-flow responses", J. Fluids Struct.63, pp. 238 - 258. https://doi.org/10.1016/j.jfluidstructs.2016.03.001
- Xu, J., He, M., Bose, N. (2009), "Vortex modes and vortexinduced vibration of a long, flexible riser", Ocean Eng. 36, 456-467. https://doi.org/10.1016/j.oceaneng.2009.01.010
- Xu, W., Qin, W., Gao, X. (2018), "Experimental Study on Streamwise Vortex-Induced Vibration of a Flexible Slender Cylinder", Appl. Sci.s 8, 311. doi:10.3390/app8020311