• Title/Summary/Keyword: Flexible Control

Search Result 1,894, Processing Time 0.037 seconds

The F/S Concept Design for Solid Motor Thrust Vector Control (고체모터 추력제어를 위한 F/S 개념 설계)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.170-176
    • /
    • 2008
  • The concept design of Flexible Seal for thrust vector control of solid motor was performed. Through the concept design, the optimum pivot point of flexible seal, cross-section configuration of flexible seal and thermal protection system from combustion gas was decided. The pivot point of flexible seal has aft pivot type and cross-section view is conical type. For satisfying a spring torque rate, the shear modulus of rubber has the value of under about 0.6MPa and failure shear stress has over about 2.5MPa.

  • PDF

Model updation using multiple parameters influencing servoelastic response of a flexible aircraft

  • Srinivasan, Prabha;Joshi, Ashok
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.185-202
    • /
    • 2017
  • In a flexible airvehicle, an assessment of the structural coupling levels through analysis and experiments provides structural data for the design of notch filters which are generally utilized in the flight control system to attenuate the flexible response pickup. This is necessitated as during flight, closed loop control actuation driven with flexible response inputs could lead to stability and performance related problems. In the present work, critical parameters influencing servoelastic response have been identified. A sensitivity study has been carried out to assess the extent of influence of each parameter. A multi-parameter tuning approach has been implemented to achieve an enhanced analytical model for improved predictions of aircraft servoelastic response. To illustrate the model updation approach, initial and improved test analysis correlation of lateral servoelastic responses for a generic flexible airvehicle are presented.

Position control of single-link manipulator using neural network (신경 회로망을 이용한 단일 링크의 유연한 매니퓰레이터의 위치제어)

  • 이효종;최영길;전홍태;장태규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.18-23
    • /
    • 1990
  • In this paper, the dynamic modeling and a tip-position controller of a single-link flexible manipulator are developed. To design the controller of a flexible manipulator, at first, it is required to obtain the accurate dynamic model of manipulator describing both rigid motion and flexible vibration. For this purpose, FEM(Finite Element Method) and Lagrange approach are utilized to obtain the dynamic model. After obtaining the dynamic model of a single-link manipulator, a controller which computes the input torque to perform the desired trajectory is developed using neural network.

  • PDF

Design and Implementation of a Wearable LED Display Device

  • Shin, Seung-Hyeok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.7-13
    • /
    • 2015
  • Wearable device, next generation smart device, is consistently growing. The flexible display will be a kind of display in the wearable device. The flexible display technology is now evolving with end-user requirement such as portability and easy installation. Previous wearable display products still have some difficulties in manufacturing and in flexibility whole device. But it can be a flexible display with LED device and utilized in commercial area. In this paper, we propose a driver to control the LED display and implement a flexible LED display system.

Load Frequency Control using Parameter Self-Tuning fuzzy Controller (파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어)

  • 탁한호;추연규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.50-59
    • /
    • 1998
  • This paper presents stabilization and adaptive control of flexible single link robot manipulator system by self-recurrent neural networks that is one of the neural networks and is effective in nonlinear control. The architecture of neural networks is a modified model of self-recurrent structure which has a hidden layer. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. When a flexible manipulator is rotated by a motor through the fixed end, transverse vibration may occur. The motor toroque should be controlled in such a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipuators so that it is arresed as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large changes in configuration common to robotic tasks requires dynamic models that describe both the rigid body motions, as well as the flexural vibrations. Therefore, a dynamic models for a flexible single link robot manipulator is derived, and then a comparative analysis was made with linear controller through an simulation and experiment. The results are proesented to illustrate thd advantages and imporved performance of the proposed adaptive control ove the conventional linear controller.

  • PDF

Modeling and control of a flexible continuum module actuated by embedded shape memory alloys

  • Hadi, Alireza;Akbari, Hossein
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.663-682
    • /
    • 2016
  • Continuum manipulators as a kind of mechanical arms are useful tools in special robotic applications. In medical applications, like colonoscopy, a maneuverable thin and flexible manipulator is required. This research is focused on developing a basic module for such an application using shape memory alloys (SMA). In the structure of the module three wires of SMA are uniformly distributed and attached to the circumference of a flexible tube. By activating wires, individually or together, different rotation regimes are provided. SMA model is used based on Brinson work. The SMA model is combined to model of flexible tube to provide a composite model of the module. Simulating the model in Matlab provided a platform to be used to develop controller. Complex and nonlinear behavior of SMA make the control problem hard especially when a few SMA actuators are active simultaneously. In this paper, position control of the two degree of freedom module is under focus. An experimental control strategy is developed to regulate a desired position in the module. The simulation results present a reasonable performance of the controller. Moreover, the results are verified through experiments and show that the continuum module of this paper would be used in real modular manipulators.

Feedforward Active Shock Response Control of a Flexible Beam (유연빔의 피드포워드 능동 충격응답 제어)

  • Pyo, Sang-Ho;Lee, Young-Sup;Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.213-216
    • /
    • 2005
  • Active control method is applied to a flexible beam excited by a shock impulse by focusing on reducing the residual vibrations after the shock input. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using an error sensor and adaptive algorithm. Both numerical simulation and experimental result show a promising possibility of applying to a practical problem.

  • PDF

A Study of Vibration Control of a Slender Structure Using a Multi-Degree-of-Freedom Manipulator (다 자유도 운동장치를 이용한 세장구조물의 진동제어 연구)

  • Kim, Nak-In;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1227-1234
    • /
    • 2001
  • A multi d.o.f robotic manipulator is considered for multi-axis vibration control of a slender structure, using the concept of the flow source based vibration control. In order not to cause the motion saturation of the manipulator system, a hybrid dynamics associated with the flexible and desired manipulator error dynamics is also modeled as the control object. It is numerically shown that the flexible vibrations and the base motions of a test structure can be effectively controlled with the proposed hybrid dynamics.

Manual control of a flexible arm and application to automatic control systems

  • Sasaki, Minoru;Inooka, Hikaru;Ishikura, Tadashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.905-908
    • /
    • 1987
  • A human operator has the ability to control a complicated system such as a gantry crane, an aircraft and a remote manipulator after enough training and learning. In this article, we attempt the positioning experiment of a flexible arm by a human operator. Flexible arm has nonlinearlity and infinite-degrees of freedom in general; thus it is difficult to obtain a control input. The operator interprets a given task and finds the procedure of operations. He devises an effective way of achieving the goal on the basis of his experience and knowledge about the task.

  • PDF

An Adaptive Tracking Controller for Vibration Reduction of Flexible Manipulator

  • Sung Yoon-Gyeoung;Lee Kyu-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.51-55
    • /
    • 2006
  • An adaptive tracking controller is presented for the vibration reduction of flexible manipulator employed in hazardous area by combining input shaping technique with sliding-mode control. The combined approach appears to be robust in the presence of severe disturbance and unknown parameter which will be estimated by least-square method in real time. In a maneuver strategy, it is found that a hybrid trajectory with a combination of low frequency mode and rigid-body mode results in better performance and is more efficient than the traditional rigid body trajectory alone which many researchers have employed. The feasibility of the adaptive tracking control approach is demonstrated by applying it to the simplified model of robot system. For the applications of the proposed technique to realistic systems, several requirements are discussed such as control stability and large system order resulted from finite element modeling.