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ABSTRACT

This paper presents stabilization and adaptive control of flexible single link robot manipulator

system by self-recurrent neural networks that is one of the neural networks and is effective in
nonlinear control. The architecture of neural networks is a modified model of self-recurrent structure
which has a hidden layer. The self-recurrent neural networks can be used to approximate any
continuous function to any desired degree of accuracy and the weights are updated by feedback-error
learning algorithm. When a flexible manipulator is rotated by a motor through the fixed end,
transverse vibration may occur. The motor torque should be controlied in such a way that the motor
rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipulators so
that it is arrested as soon as possible at the end of rotation. Accurate vibration control of lightweight
manipulator during the large changes in configuration common to robotic tasks requires dynamic
models that describe both the rigid body motions, as well as the flexural vibrations. Therefore, a
dynamic models for a flexible single link robot manipulator is derived, and then a comparative
analysis was made with linear controller through an simulation and experiment. The results are
presented to illustrate the advantages and improved performance of the proposed adaptive control

over the conventional linear controller,

1. Introduction

Today most of the robots often used in industrial
fields for automatization and higher efficiency have
rigid bodies and thick, heavy manipulators. The bad
things about these robots are that they take a lot of
space and that actuators require more motion energe,
which in turn makes it difficult to promote motion
speed. Now a lot of researches are under way to
complement such weaknesses by reducing the weight
and making the link more flexible[1-5].

On the other hand the flexibility of the link causes
vibration in motion: therefore more precise position
control is required for efficient vibration control, for
which more exact dynamics equation and efficient
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control algorithm are indispensable. Y. Sakaw([1] and
Z. H. Luo[2] applied optimal control to flexible link
and demonstrated its utility. K. S. Yeung[3] applied
variable structure control method and did the same.
However linear optimal control or linear feedback
control is robust within limited linear areas enough
for systems to be sensitive to them when unexpected
disturbances happen. Accordingly the regulation of
system parameters is necessary in case system
environment is unknown or uncertain.

Recently to cope with the control problems a lot of
experts are conducting a study of control methods to
which neural networks are applied, as opposed to
existing mathematical analytical ones, on parallel
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process, learning, nonlinear mapping, pattern
recognition, information process, industrial
application, etc.[7-10]. Besides neural networks are
characterized by nonlinearity, learning ability and
optimalizing ability, and by making practical use of
these characteristics and appling them to nonlinear
control, adaptive control, etc. good results have been
achieved[8, 9].

This study focuses on how to use self-recurrent
neural networks based on adaptive controller[12] and
bring under active control the position of flixible
single link robot manipulators. The structure of neural
networks has one hidden layer with self-recurrent
architecture. And the initial weights are given by
random number, the learning of weights was made use
of feedback errors learning algorithm by simultaneous
learning and control on behalf of on-line system. In
addition to netural networks controller is carried on as
on-line learning by means of desired trajectory in
repetition, feedback errors were backpropagated
through the neural networks. The purpose of learning
in on-line is to lessen nonlinear errors and expand the
operational region of adaptive control system with
the reasonable control parameter against the
nonlinear plant modification and external disturbance
without teaching signal.

Also, generalized feedback-error learning algorithm
is used for the learning of the self-recurrent neural
networks based on adaptive controller. The kinetic
equation of flexible link was derived using an
assumed mode method and a Lagrange equation. To
demonstrate the efficiency of the self-recurrent neural
networks control algorithm presented in this study, a
neural networks controller based adaptive controller
was designed and then a comparative analysis was
made with linear controller through an simulation and

experiment
2.Self-recurrent neural networks
The arbitrary nonlinear function using neural

networks is to approximation by accurately state. With
the objective of a simple self-recurrent neuron at
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hidden layer and a shorter training time for neural
networks model, neural networks, as shown in Fig. 1,
is developed. Consider Fig. 1, where for each discrete
time k, I: (k) is the i th input, S, (k) is the sum of
inputs to the j th self-recurrent neuron, X; (k) is the
output of the j th self-recurrent neuron, O(k) is the
output of the output layer, z'is delay time, and @ is
self-recurrent neuron. Depending on the network, w
w’, or W represents hidden layer, output, or weight
vectors of self-recurrent layer, respectively.The
mathematical model for the output value and the
weights update of the neural networks in Fig.1 is
shown below:

Ok)=Y W'X,(k)+86,

J

X, (k)= f(s,(k))+6,

W'L(k)

it

S,(k)=WPX,(k-1)+ 2
i=1

Fig. 1. Self-recurrent neural networks architecture.

where f( - ) is the usual sigmoid function. Then error
function for feedback-error learning algorithm for
neural networks can be defined as
1 n
E(k) = EZ(’(") - y(k))* (1)
k=1

where r(k) is the desired response of plant, y(k) is the
actual response of plant. In general, the plant response
is a nonlinear mapping G( - ) of input u(k), i.e., y(k) =
Gu(), i<k ).

ou(k)
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where e(k) i1s the error between the desired and
output response of the plant. Given the self-recurrent
neural networks shown in Fig. 1 and described by (1),
(2), and (3), the output gradients with respect to
output, recurrent, and input weights, respectively, are
given by

d0(k)
W/

20(k)
ow”

200(k)
oW,/

i

=X, (k)

= WP,k

and satisfy
(k) = f/(S)(X; (k=D + WP (k= 1)),
P(0) =

Q,(k) = f(S)U,(k)+ WPQ,(k—1)),

Q,';(O) =0

(9)

(10)

The weights can now be adjusted following a
gradient method, i.e., the update rule of the weights
becomes

JE(k)

Wn+1)=Whn)+n(-—-)

W (1D

where 1 is a learning rate, and E(k) represents error

function.
3. Modeling of flexible manipulator

Fig. 1 shows the manipulator system that has a
flexible single link. 7+ means the mass moment of
inertia of the hub referring to the actuator operating
the manipulator plus the part fixing the link to the
actuator: M., the mass of end effect plus payload at the
end-point of the link and J., its mass moment of
inertia: g, the gravity heading below z axis. Flexible

link were modeled on the thin long uniform
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Fig. 2 Flexible single link robot manipulator.

Bernoulli-Euller beam which has such great length
compared with a cross-section area that shear
deformation and rotary inertia effects can be
neglected. In the operation they don’t show any
distortion and it is assumed that they have only
bending deformation. The friction of joints and the
structural damping of flexible link are neglected in
system modelling. The differential equation of motion
should be satisfactory to the flexible link with free

transverse vibration and the equation is as follows[13]:

(92w(x t)

2
pAGr 2D Fwix,t)

} 0 (12)
o’

tog {EI( y )

In this equation, p is linear mass density, A(x) the
cross-section area of the link and EI(x) the bending
stiffness of the link. w(x,t) the elastic displacement to
x arbitrary point of the link is the linear combination
of assumed mode shapes and generalized coordinates,
which is approached as follows[12]:

w(x.t) =Y ¢.(x)g,(t) = pg" (13)

i=1

,(x)

link, is clamped-free eigenfunction, g: (¢), the i th

where , the i th assumed mode shape of the
generalized coordinate which is the time function
¢,(x) . The link has a moment of
inertia I» and a length /. The angular displacement of
0(r)
y(x,?) can be represented as

corresponding to

the link is denoted as , so the total deflection

y(x,t) = x0(t) + w(x,1) (14)
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The elastic displacement on oprate plane of the
system is being approximated by the assumed modes.
The assumed modes is the assumed modes with
function of space coodinates and the linear
combination of generalized coordinates with time
function, which is approached as (13). In addition,
comparative function which can be satisfied with both
the geomatrical boundary conditions that it has mass
in end-point of the clamped-free link and the natural
boundary condition simultaneously is used for the
assumed modes shape. At the clamped end (x=0),
when the zero conditon of deflection and gradient
from hub the geomatrical boundary conditions given

by bellow.
1) w(0,t) = w, = 0: The deflection must be zero.
w(0,1) -0
) : The slope of the deflection

curve must be zero.

At the frze end (x=/), the shearing force and the
bending moment by balance condition the natural
boundary condition given by bellow.

0’ w(l,1) . galt)
DHEI— +J|0+————|=0
) ox? { * ox }

: The bending moment must be zero.

2)Ela m(l 1)

+ 0wt -6l + gsine] =

: The shearing force is zero.
The above boundary condition yield the

transcendental equation for the natural frequency Bl

cos(Bhcos(BH+1=0 (15)
From (13), the eigenfunction ¢@(x) can be
#(x) = ¢, sin Bx + ¢, cos Bx + ¢, sinh Bx 16)

+ ¢, cosh fBx

represented as
where C; is an arbitrary constant, Substituting

boundary ccnditions, and reform for ¢, ¢z, ¢s, and cs

Kinetic energy come from rotary motion of hub,
alignment or rotary motion of flexible link and that of
the mass of end point. It is sums to total kinetic energy
as following.

And potential energy in system is the very elastic

e loa [[2x +4* +261ix
2 27 Y
+6%w’ |dx + % 1[0 +26v;
i ]+ %M,,[wf +0%w + 26wl + 9212] (17)
displacement of flexible link, if it was irrespective of

the mass of end-point and gravity of flexible link, the
above energy can be demonstrated as follows.

The equation of motion can apply the
Euler-Lagrange equation.
sin@
—XCOS O]dx + M(,g[w sin@ — xcos @] (18)

where Is input torque for drive of flexible link
ié’:._i . i=1,2,....n (19)
dt dg, og,
do_o (20 )
dt 96 90

from actuator, and L = K - V. Substituting (17) and
(18) into (19) and (20) gives, without regard to the
mass of end-point of flexible link, the mass of inertia
and gravity, applied partial differential to generalized
coordinates. The kinetic equation of discreted
differential equation type is given by

T+ 40} [ ¢xdm (21)
j=1

[I

h

.. T ¢x 2
q, = _I—”J.U‘pixdm —q;W; [1
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([ xdm)’
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Ih

n q,0; J:‘P xdm J.(:q) xdm

‘2 Ih

J#i

4. Design of control system

In this section, a feedback-error learning scheme
that consists of a linear feedback controller and the
neural networks as a feedforward inverse controller, as
shown in Fig. 3, is discussed. The transfer function of
system at open loop analysis of flexible link is shown
below.

53.35 +63.965° + 47745 + 5692

G =
(s) 5 +14325°

(23)

At this time, because the pole exists in all imaginary
axis, this system will vibrate under the unstability.
To ensure unstable system to stability, if zero point
was added to transfer function equation, pole point in
imaginary axis moves to left half surface, can attain
safe system. In this Fig. 3, the neural networks is
configured in parallel to a conventional feedback
controller and the network is trained on-line by
repeating the desired trajectory cycles where the
feedback-error is backpropagated through the
network. Convergence is achieved when the neural
networks has learned the inverse of the plant and it
then takes control of the plant and eliminates the
significance of the feedback controller. This scheme
consists of a fixed gain linear feedback controller that
makes the overall system stable, and a feedforward
controller which updates its internal weights to
generate the control signal w..(k) in the process of
becoming an inverse model of the plant.
networks. During the initial training period, the
control signal u.(k) was very insignificant. The
control signal from the feedback controller, u.(k), was
significant because of the large initial error. Hence, in
the early stage of learning, the component u.(k) was

dominant over the u..(k). However, as the learning

Adaptive Algorithm
(22)
a(k)
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trials increased u..(k) become dominant over u-(k).

Fig. 3 Total control system using neural

In general, the feedback-error learning has the
following advantages: ( i) a teaching signal is not
required to train the neural networks, instead, the
error signal is used as the training signal, (i) the
learning and control are performed simultaneously in
sharp contrast to the conventional ‘learn-then-control’
approach. In Fig. 3, S represents a dynamic plant,
K[e(k)] is a linear function of the error and the
derivative of error representing a linear control law.
The dynamics of the overall system shown in Fig. 3
are described by the following equations.

e(k)=r(k)— y(k) (23)
where r(k) is the desired trajectory,

K[e(k)] = er(k) + K é(k) (24)

u(k)=u,, (k)+u (k) (25)

y(k) = Su(k) (26)

In this Fig. 3, the characteristics of the actuator with
deadzone are described by the function causes method

wky—-d if  uk)>d,
Du]=|0 if —-d<uk)<d, (27)
wk)+d if  utky<d

where the parameter d represents the width of the
deadzone, and even if it cannot be used in simulation,
at real experiment if large input disposed in plant, it
can bad influence on total system, plant input can be
controlled by the addition of actuator with deadzone.
At this experiment, controller was utilized by limit
switch, and system operation on program will be
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stopped. The control signal to the plant is then given
by

v(k) = D[u(k)] (28)

The neural networks controller, once trained, will
represent the inverse dynamics model of the dynamic
plant. The fixed gain linear controller ensures
adequate performance prior to the convergence of the
neural networks controller parameters, and reduces the
steady-state output errors due to the disturbance
inputs. In essence, the output of the linear controller is
an indication of the mis-match between the dynamics
of the plant and the inverse dynamics model obtained
by the neural networks controller This is because if the
true inverse dynamics model has been learned, the
neural networks controller alone will provide the
necessary control signal to achieve the desired
trajectory. With zero trajectory error, the linear
controller produces no output and, hence, indicates
that learning has completed. The neural networks
controller is a three layer network that has 7 input
neurons, 10 neurons in the hidden layer and 1 output
neuron. The activation function used for the input and
hidden layers is the tan-sigmoid function and for the
output layer is a linear function. The inputs to the
neural networks are r(k), r(k), F(k), e(k), e(k)
w(k), and (k) and the output of the neural networks
is the control action u.. (k)

5. Experimental results

To demonstrate the efficiency of the self-recurrent
neural networks control algorithm presented in this
study, a neural networks controller based adaptive
controller was designed and then a comparative
analysis was made with linear controller(PD
controller) through an simulation and experiment, and
the formation of the experimental system of the
controller is shown in Fig. 4. The simulation were
performed using MATLAB software package.

In Fig. 4, the camera is equipped with linearlly
arranged 2048 analog photo detectors, each of which
is 13{4n] wide. The whole length of the arranged
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detectors is 26.624mm. The light of LED is projected
on the arranged detectors through the lense. It in turn
is changed into voltage distribution and computed
through the encoder. For the motor PMI DD motor
with 3000rpm and servo amplifier were used. The
system parameters used in this study are the length of
the link /=1.2[m], the width of the link w=0.0254[m],
the thickness of the link D=0.0032[m], mass density
rho P=0.2332[kg/m2], coefficiency of elasticity
EI=6.715[N - m’], hub inertia I =0.017[kg/m’], the
matrial of the hub is aluminum, and the end-point
payload of the link not considered.

Reticle
_— Camera :.EDt
Camera / I J argef
Encoder LT F.‘E}E‘iﬁeﬂj
586 Board 5
i 1=t ==~ Direct Drive Motor
pPC A/D . DIA —| Power "TTZ S
Board | | Amplifier Encoder

Fig. 4 Configuration of experimental.

The resonance ferquency of the link are omega w.
= 1.38 [rad/s] and w: = 8.71 [rad/s] The initial value
of the weight to the neural networks controller was
made random numbers between -1 and 1: 7 the initial
learning rates of the neural networks controller,
0.094. K: and K:, which are gain constants, were
made 0.1 and 5.9 respectively: bias weights, between
-1 and 1. In the structure presented in this paper, after
making lots of information on the flexible link
modeling, and then which is controlled as a inverse
dynamics and neural networks made a compensation
for as much as the amount of error in the practical
environment in the presence of errors of modeling, the
mapping region is not large. As in spite of neural
networks with the structure of multi input-output,
limiting early weights to very small area, that we have
made learning more faster. If we control it with neural
networks controller only without linear controller, the
mapping area increases, so the learning of neural

networks becomes difficult and makes divergence.
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The reference input used in this simulation is two
types, which used sin(z) as a position control as to
trajectory tracking, and & I[rad] step as a position,
we observed the response as to total deflection and
elastic displacement in output. Fig. 5 shows the
response for PD controller and Fig. 6 is the response
for proposed neural networks controller. As you know
from the Fig., though both of the two controller is well
carried on, the proposed neural networks controller
with the function of learning has learned the optimal
trajectory on the given trajectory compared with linear
controller as well as showed the superior ability to
cope with elastic displacement and robust qualites.
Fig. 7 shows the results of practical experimental
though PD controller and neural networks controller.
The experiment in this paper was made in the way of
changing the initial position of the flexible single
link robot manipulator from 0" to =+ 10" the angle of
the link position of the system output which is wanted
and making a analysis of the total deflection and
elastic displacement of the link for PD controller and

neural network controller in moving. Fig. 7(a), (b)
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(a) Total deflection.
Fig. 5 Simulation response of PD
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Fig. 5 Simulation response of PD controller.
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Fig. 6 Simulation response of neural networks controller.
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(d) Elastic displacement(NN controller)

Fig. 7 Experimental response

represents whole total deflection(deg) which is
shown in vertical axis, and Fig. 7(c), (d) is elastic
displacement which is shown in vertical axis(deg).
Knowing from the Fig., we can see the satisfactory
efficiency of reference input compared with results of
simulation, the learning ability of neural networks
controller can see exact position control according to
various sudden change of paremeter of plant. In this
results, the dynamic structure of neural networks
controller is made to be an approximate inverse model
of the plant under cotrol thereby achieving almost
unity mapping between the input and output signal
space. The learning and adaptive algorithm decides the
number of controller modules to be activated to match

the order of the dynamic system under control.

6. Conclution

In this study, an experiment was made of the
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adaptive control of a flexible single link robot
manipultor through the actual system formation where
the neural networks theory was applied as opposed to
the existing mathematical analytical methods. The
purpose is to cope with the difficulty of the
conventional control techniques. The self-recurrent
neural networks controller based adaptive controller
were designed for the control system, the
feedback-error learning algorithm was used to
improve the weight of the other. The result of the
experiment was that neural network controller, a
nonlinear adaptive controller can make any desired
angle with less vibration and quicker stabilization
than a PD controller, that the neural networks
controller can be of more efficient use for the position
control of the flexible link. The task of study in the
future is to incorporate various payloads into the
end-point of the link and to demonstrate in the
experiment of multi-link that the neural networks
controller is more efficient in position control than

other conventional ones.
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