• Title/Summary/Keyword: Flattening 2D pattern

Search Result 13, Processing Time 0.02 seconds

Optimal Matrix Standardization for Pattern Flattening Using Grid Method -Focused on Young Women's Upper Front Shell- (Grid method에 의한 3차원 형상의 평면전개를 위한 optimal matrix 표준화 연구 -$18{\sim}24$세 여성 Upper Front Shell을 중심으로-)

  • Choi, Young-Lim;Nam, Yun-Ja;Choi, Kueng-Mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.8
    • /
    • pp.1242-1252
    • /
    • 2006
  • Many applications in computer graphics require complex, highly detailed models. However, to control processing time, it is often desirable to use approximations in place of excessively detailed models. Therefore, we have developed the notion of an optimal matrix to simplify the model surface which can then rapidly obtain high quality 2D patterns by flattening the 3D surface. Firstly, the woman's 3D body was modeled based on Size Korea data. Secondly, the 3D model was divided by shell and block for the pattern draft. Thirdly, each block was flattened by the grid and bridge method. Finally, we select the optimal matrix and demonstrate it's efficiency and quality. The proposed approach accommodates surfaces with darts, which are commonly utilized in the clothing industry to reduce the deformation of surface forming and flattening. The resulting optimal matrix could be an initiation of standardization for pattern flattening. This can facilitate much better approximations, in both efficiency and exactness.

Design of Brassiere Pattern for Big Size Breast Women -Based on 3D Breast Scanning Data- (유방이 큰 여성을 위한 브래지어 패턴 설계 -3차원 유방 형상 자료를 중심으로-)

  • Han, Chohee;Yi, Kyong-Hwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.2
    • /
    • pp.204-214
    • /
    • 2019
  • A CAD program has recently been introduced that can be directly developed into a three-dimensional human body shape and made into a pattern. It is possible to fabricate a bra that reflects the volume and surface area of the breast; however, it still needs to be verified. This study investigates the average size and shape of 20 big-breasted women and designs a brassiere pattern for women with large breasts using a 3D Flattening function of OptiTex PDS v15.6. In addition, the study verifies the reliability of the proposed method compared to a conventional brassiere pattern. The study results are as follows. First, the three dimensional measurement values were smaller than the direct measurement dimensions when the three dimension measurement dimensions of the subjects were compared with the direct measurement dimensions, the replica measurement dimensions and the three dimensional measurement dimensions. Second, the 3D flattening pattern reflects the actual shape, length, and area of the actual breast when comparing a brassiere pattern using a 3D shape and pattern reflecting the direct measurement.

Segmentation Using Curvature Information of 3D Body Surface for Tight-fit Pattern Making (상반신 밀착패턴 제작을 위한 3차원 인체 표면 곡률기준 분할)

  • Park, Hye-Jun;Hong, Kyung-Hi;Cho, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.1
    • /
    • pp.68-79
    • /
    • 2009
  • It is inevitable to have cutting line to get the 2D pattern from 3D body surface. In this paper the efficiency of curvature plot as a cutting line in the process of flattening 3D surface was investigated. As reference, basic clothing construction line was adopted to divide the 3D surface into small blocks to make the flattening process easy. Female dummy as well as human body were scanned and surface of the upper body was segmented using curvature plot and basic constructing line. 2D tight-fit pattern was developed using three software, the RapidForm 2004, 2C-AN and Yuka CAD. Gap between clothes and body, and the clothing pressure on the body was observed to determine the fit of the clothes. As results, clothes constructed with blocks divided by curvature plot displayed a similar level of tight fit as compared with those by basic construction line. It was found that curvature plot is effective method as a segmentation of the 3D surface even for the actual body which does not have any previous reference line. It is expected that application of curvature plot will be expanded in 3D apparel technology.

Surface Flattening criterion of Female's Upper Front Shell Using Grid Method (Grid method에 의한 성인 여성 3차원 형상의 상반신 앞판에 대한 평면전개 기준 연구)

  • Choi, Young-Lim;Nam, Yun-Ja;Choi, Kueng-Mi;Cui, Ming-Hai;Han, Sul-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.12
    • /
    • pp.1825-1836
    • /
    • 2008
  • Many applications in computer graphics require complex and highly detailed models. However it is often desirable to use approximations in place of excessively detailed models in order to control the processing time. Thus, we aim to develop a notion of optimal matrix to simplify surface which can rapidly obtain the high quality 2D patterns flattening 3D surface as follows. Firstly, two 3D bodies are modeled based on existing Size Korea data. Secondly, each model is divided by shell and block for its pattern draft. Thirdly, each block is flattened by grid and bridge method. Finally, we selected the optimal matrix and demonstrated the efficiency and quality of the proposed method. This proposed approach accommodates surfaces with darts, which are commonly used in the clothing industry to reduce the deformation of surface forming and flattening. The resulting optimal matrix could be an initiation of standardization for pattern flattening. It is expected that this method could facilitate much better approximation in both efficiency and precision.

A Study on Surface Flattening for 3 Dimensional Shoe Pattern Design (신발패턴의 3차원 설계를 위한 곡면의 평면전개에 관한 연구)

  • Song S. J.;Kim S. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.266-275
    • /
    • 2004
  • In this paper, a method for generating the planar developments of three-dimensional shoe upper surfaces is proposed. This method is based on the optimization technique minimizing the geometric error occurred on the developed planar surface. Additionally, a rapid mapping algorithm to transform a curve on flattened plane to original surface (or vice versa) is proposed. These techniques are implemented on the 2D/3D integrated shoe design system. Using this system, a prototype running shoe can be designed more precisely and can be manufactured more quickly.

Subjective Wearing Assessment and Clothing Pressure depending on the Pattern Reduction Rate of Developed Cycle Pants Using the 3D Human Scan Data (3D 스캔 데이터를 이용하여 개발된 사이클 팬츠 패턴의 축소율에 따른 의복압 및 주관적 착의 평가)

  • Jeong, Yeonhee;Hong, Kyunghi
    • Korean Journal of Human Ecology
    • /
    • v.24 no.2
    • /
    • pp.255-266
    • /
    • 2015
  • In this study, we have developed the ergonomic pattern from the 3D human body reflecting cycling posture and extensibility of the stretch fabrics. Adjusting pressure level in the construction of athlete's tight-fitting stretch garments by reducing the original pattern is a challenging subject, which influence on the performance of the wearer directly. Therefore, in this study, relationships between the reduction rates of the 2D pattern obtained from the 3D human scan and resultant clothing pressure were explored to improve the fit and pressure exerted by reduced clothing pattern. Subjective wear sensations of the experimental garments were rated using a seven-point Likert scale on two consecutive days. While wearing the garments, subjects were asked to take five different postures including waist flexion, sitting and others. A Likert-type scale was used for the evaluation, with 7 points indicating the best fit in tight-fitting pants. Comparing 2/3T-pattern with T-pattern, the latter was superior to 2/3T-pattern in terms of adhere well to the waist and hip area in the 0.032 significance level. T-pattern was superior to 2/3T-pattern in terms of fitting and wear comfort. As results, the pattern obtained from the flexed body reflecting cycling posture already included the contraction and extension of the skin while cycling posture, so that the extra ease for movement and good fit was not need to be considered. The optimized reduction rates were determined with the proposed reduction rate, the resultant pressure range was within the range of $0.5{\sim}3.0gf/cm^2$ at eight locations on the body except front waist band and thigh band.

2D Pattern Development of Body Surface from 3D Human Scan Data Using Standing and Cycling Postures (3D 스캔을 이용한 사이클 동작 전후 체표 변화 고찰 및 2D 전개 패턴의 비교)

  • Jeong, Yeonhee;Lee, Yejin
    • Korean Journal of Human Ecology
    • /
    • v.21 no.5
    • /
    • pp.975-988
    • /
    • 2012
  • Although the pattern development for tight-fitting clothing has been carried out using 3D data on humans, the pattern development using 3D scan data obtained for various postures still remains an interesting subject. In this study, we have developed the 2D pattern using the 3D human body reflecting standing and cycling postures. The 3D scan data of a subject was obtained using Cyberware. 2C-AN program(Triangle simplification and the Runge-Kutta method) was used in the system to reduce the 3D scan data points and to make segmented triangular patches in a plane from 3D data. As results, surface distance and area of each body part of standing and cycling postures were also provided for the future application of the functional clothing construction. The area of center piece on the front (c.front) decreased by $106.45cm^2$(-13.08%) and that of lateral piece(s.back) on the back increased by $144.96cm^2$(18.69%) in the patterns of cycling posture. The girth of neck and waist for the cycling posture increased by 0.88cm (3.92%) and 1.56cm(4.40%) respectively, and the that of thigh decreased by 1.01cm(-2.24%). The differences between the area in the 2D pattern obtained from the 3D scan data and that in the 3D scan surface data for standing and cycling postures were very small($-10.34cm^2$(-0.32%) and $-44.33cm^2$(-1.32%)).

Determination of the Actual Equilibrium Shape Finding and Optimum Cutting Pattern for Membrane Structures (막구조물의 준공평형형상해석 및 최적재단도 결정)

  • Lee, Jang-Bog;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.157-166
    • /
    • 2001
  • In general, the cutting pattern of the membrane structures is determined by dividing the complicated curved 3-D surface into several 2-D plane strip by using flattening technique. In this procedure, however, some discrepancies ore occurred between actual stresses of equilibrated state and designed uniform stresses because the material properties are not considered. These deviations can cause the critical structural problems, wrinkling or overstress, and thus a optimization process should be considered. In this paper, a new analytical method for determining an optimum cutting pattern considering material properties is presented. Here, iterative procedure is introduced to decrease the errors caused in numerical process. The optimization method proposed can diminish the deviations occurred by material properties and numerical errors, simultaneously. As a results, it is shown that the final stress distributions for the HP shell model are sufficiently near to design stress distributions, and it can be concluded that this method can be used to obtain the optimized cutting pattern of membrane structures.

  • PDF

Briefs Pattern Making for Women in their 20's using 3D Parametric Human Body Model (3차원 파라메트릭 모델을 활용한 20대 성인 여성용 브리프 패턴 설계)

  • Choi, Sin-Ae;Park, Soon-Jee
    • Fashion & Textile Research Journal
    • /
    • v.12 no.5
    • /
    • pp.642-649
    • /
    • 2010
  • This study was designed to generate briefs pattern for women in their twenties using 3D parametric body model. 151 women in their 20's were random sampled and measured using Martine's anthropometry. And one subject was chosen as the representative subject for 3D scanning. Parametric model was generated of using CATIA P3, Unigraphics NX4.0, Rapidform 2006. And the 3D surface of parametric body model was flattened onto the 2D plane. 3 downscale ratios(0%, 10%, 15%) were applied to generated pattern to figure out what downscale ratio was suitable to make briefs with stretch fabric. 4 kinds of experimental briefs were made with stretch fabrics(0%, 10%, 15% downscale) and worn on the dressform. Subjective evaluation on the appearance was done and the data was analyzed by ANOVA with post-hoc test. Briefs pattern was generated through the process of flattening the parametric surface and arranging the patches to make briefs pattern by dart manipulation. The different ration of outline and area between 3D surface and 2D pattern were 0.22% and 0.09% respectively. It showed that a parametric model could provide a desirable pattern with minute size error. The results of subjective evaluation on the appearance of 4 experimental briefs showed that stretch briefs with 15% downscale ratio was evaluated most highly in most items. Findings imply that it is feasible to apply 3D parametric model to generate patterns for various items considering various fabric properties.

A Study on Development of Men's Formal Jacket Pattern by 3D Human Body Scan Data -A Focus on Men's in their Late 30s- (3D 인체데이터를 활용한 남성 정장재킷 패턴개발 연구 -30대 후반 남성을 중심으로-)

  • Shin, Kyung-hee;Suh, Chuyeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.3
    • /
    • pp.440-458
    • /
    • 2019
  • Based on a 3D body data and pattern comparison analysis, this study developed a formal jacket pattern for men in their late 30s. In order to select the representative type of men in their late 30s, factor analysis and cluster analysis were conducted on data form 319 men, 35 to 39 years old using the anthropometric data from The 7th Size Korea (2015) as the representative body type. The surface of the body surface was developed using a 3D human shape of a male in his 30s in The 6th Size Korea (2010). Then the shape was changed to a flat pattern that confirmed the necessary elements for setting the shape and dimension. Cluster analysis revealed type B as the representative type because it showed the best shape characteristics for men in the late 30s. The drafting method of the final research pattern is as follows. Jacket length: stature/2.5cm, back length: stature/5+8.5cm (constant)], armhole depth: [stature/ 7-1.5cm (constant)], back width: [C/9+9.5cm (constant)]+1cm (ease), front width: [C/9+8.5cm (constant)]+1cm (ease), armscye depth: C/8, front waist darts: 1cm, front closure amount: 2cm.