• Title/Summary/Keyword: Flat contact

Search Result 340, Processing Time 0.022 seconds

Contact analysis of spherical ball and a deformable flat model with the effect of tangent modulus

  • Sathish Gandhi, V.C.;Ramesh, S.;Kumaravelan, R.;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.61-72
    • /
    • 2012
  • The paper is on contact analysis of a spherical ball with a deformable flat, considering the effect of tangent modulus on the contact parameters of a non-adhesive frictionless elastic-plastic contact. The contact analysis of this model has been carried out using analysis software Ansys and Abaqus. The contact parameters such as area of contact between two consecutive steps, volume of bulged material are evaluated from the formulated equations. The effect of the tangent modulus is considered for determining these parameters. The tangent modulus are accounted between 0.1E and 0.5E of materials E/Y value greater than 500 and less than 1750. Result shows that upto an optimal tangent modulus values the elastic core push up to the free surface in the flat. The simulation is also carried out in Abaqus and result provide evidence for the volume of bulged material in the contact region move up and flow into the free surface of the flat from the contact edge between the ball and flat. The strain energy of the whole model is varied between 20 to 40 percentage of the stipulated time for analysis.

Study on the Profile of Body Spring in the Flat Type Wiper Blade for an Intended Contact Pressure Distribution (임의의 누름압 분포를 나타내는 플랫형 블레이드 스프링 레일의 곡면 형상)

  • Song, Kyoungjoon;Lee, Hyeongill
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • An analytical procedure to determine a proper profile of the spring rail that generates intended contact pressure distribution in the flat wiper blade is introduced. The flat wiper blade is one piece blade and subjected to pressing force at a center point. In this type of blade, contact pressure distribution in the tip of rubber strip is determined by the pressing force, the initial profile of the blade before contact and bending stiffness of the blade. Experimentally obtained bending stiffness of the blade assembly is almost identical to that of the spring rail. Principle of reciprocity has been used to define the initial profile of spring rail from the deformed profile that is assumed to be identical to the windshield glass profile. The procedure has been verified experimentally by measuring the contact pressure of the blade assembled with the spring rail designed by the procedure proposed here. Measured contact pressure distributions of the blades show good agreements with intended distributions over the entire blade span. Consequently, it can be concluded that proposed procedure has relatively good accuracy in developing the spring rail for flat blade having a specific contact pressure distribution.

Contact Fatigue Analysis of White Etching Layer according to Thickness Variation (White etching layer의 두께변화에 따른 접촉피로수명 평가)

  • Seo, Jung-Won;Kwon, Seok-Jin;Jun, Hyun-Ku;Lee, Dong-Hyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.35-41
    • /
    • 2010
  • White Etching Layer(WEL) is a phenomenon that occurs on the surface of rail due to wheel/rail interactions such as excessive braking and acceleration. Rolling Contact Fatigue(RCF) cracks on the surface of rail have been found to be associated with WEL. In this study, we have investigated RCF damages of white etching layer using twin disc testing and fatigue analysis. These tests consist of wheel flat tests and rolling contact fatigue tests. WEL has been simulated by wheel flat test. It has been founded that the WEL with a bright featureless contrast is formed on the surface of specimen by etching. Rolling contact fatigue test was conducted by using flat specimens with the WEL generated by the wheel flat test. It has been observed that two types of cracks occur within the specimen. The contact fatigue test was simulated in 2D elastic-plastic FE simulations. Based on loading cycles obtained from the finite element analysis, the fatigue life analysis according to the thickness variation of WEL was carried out. The longest fatigue life was observed from the thickness of 20um.

Frictional Behavior and Film Thickness of Some Liquid Crystals in Elastohydrodynamic Lubrication (탄성 유체 윤활에서의 액정의 마찰 특성 및 유막두께)

  • 이희성
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.255-259
    • /
    • 2002
  • The tribological properties of eight different liquid crystals were investigated in a concentrated point contact device and a ball-on-flat contact. For comparison, the same tests were also performed with commercial greases and the corresponding base oils. Under the fully flooded conditions studied, liquid crystals in a concentrated point contact showed lower friction than commercial greases and greater film thickness dependence on rolling speed than grease base oils or greases. Test results also showed that the film thickness and friction were little influenced by the composition of the examined liquid crystals.

Wetting Characteristic of Single Droplet Impinging on Hole-Patterned Texture Surfaces (홀 패턴 텍스쳐 표면에서 충돌하는 단일 액적의 젖음 특성)

  • Moon, Joo Hyun;Lee, Sangmin;Jung, Jung-Yeul;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • This study presents the dynamic wetting characteristics of an impact droplet on hole-patterned textured surfaces. The flat surfaces were manufactured by a drilling machine to generate the micro-order holes, leading to make the surface hydrophobic. Other flat surfaces were fabricated by the anodizing technique to make hydrophilic texture surfaces with a nanometer order. For hydrophilic and hydrophobic textured surfaces with similar texture area fractions, the impinging droplet experiments were conducted and compared with flat surface cases. As results, an anodized textured surface decreases apparent equilibrium contact angle and increases contact diameters, because of increase in contact area and surface energy. This is attributed to more penetration inside holes from larger capillary pressure on nanometer-order holes. On the other hand, temporal evolution of the contact diameter is smaller for the hydrophobic textured surface from less penetration on the micro-order holes.

A Study on a Quantitative Measurement of Contact Pressure Between two Rough Flat SurFaces by Means of Ultrasonic Waves. (초음파를 이용한 이체 평면접촉부의 정량적인 접촉압력 측정에 관한 연구)

  • 김경모;정인성
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.3
    • /
    • pp.8-26
    • /
    • 1990
  • It is important to have exact information about the contact pressure distribution in the design of connected parts of machines and structures. In previous works, stress analyses on a two body contact problem have been carried out in large numbers. Besides, the measurement of contact stress is important to confirm the adequateness of the theoretical analysis, to verify appropriateness of Hertzian contact theory and to know the practical pressure distribution, but an excellent measuring method con't be found at present. Therefore, a quantitative measurement of contact pressure by means of ultrasonic waves using a normal probe and an angle has been proposed to measure the contact pressure distribution between two rough flat surfaces. At first, in a new proposed calibration method, the relation between mean contact pressure and sound pressure of reflected waves is obtained by using calibration blocks with various surface roughnesses made of the same material as the rectangular section beams And then, this experimental results are compared with the analytical ones, and the utility of this method is discussed.

  • PDF

The Comparision of the Static Balance, Contact Area, and Plantar Pressure of Flexible Flat Foot According to Elastic Taping

  • Hyeon-Seong Joo;Sam-Ho Park;Myung-Mo Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.421-429
    • /
    • 2022
  • Objective: The purpose of this study was to compare and analyze the effects of arch support taping on static balance, static/dynamic foot contact area, and ground reaction force during walking according to the types of elastic tapes with mechanical elasticity differences. Design: Cross-sectional study Methods: Twenty-six participants selected for flexible flat feet through the navicular drop test were randomly assigned to non-taping, Dynamic-taping, and Mechano-taping conditions. Static balance and foot contact area were compared in the standing posture according to arch support taping conditions, and foot contact area and ground reaction force were compared during walking. Results: There was no significant difference in static balance according to the taping condition in the standing position, but the foot contact area in the Mechano-taping condition showed a significant decrease compared to the non-taping condition (p<0.05). The foot contact area during walking significantly decreased in the Dynamic-taping and Mechano-taping conditions (p<0.05), but there was no significant difference between the ground reaction force. Conclusions: Based on the results of this study, it was confirmed that among the types of elastic taping, arch support taping using dynamic taping and Mechano-taping has the effect of supporting the arch with high elastic recovery. Any type of elastic tape can be used for arch alignment in flexible flat foot.

Flat Panel Display Deflection Analysis Considering Lift Force in Non-Contact Flat Panel Display Conveyer System (비접촉 평판 디스플레이 이송장치에서 양력을 고려한 평판 디스플레이의 처짐 해석)

  • Hwang, Sung-Hyen;Choi, Hyeon-Chang;Lho, Te-Jung;Son, Te-Yong;Park, Bum-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.451-457
    • /
    • 2008
  • Flat Panel Display(FPD) is widely used a video display terminals to consumer products of LCD and PDP. The contamination and damage were affected by using the previous contact conveyor's method. In this paper, it analyzes the FPD deflection to develop the non-contact FPD transfer process using lift force. Each conveyor's equipment is called a horizontal conveyor, vertical conveyor and robot pick-up equipment. As result of an analysis of FPD panel's deflection, a robot pick-up equipment has performed according to under the present conditions like panel's weight and loaded glass to move FPD panel from one place to other places properly. Results of the analysis showed 0.474 mm, 0.424 mm and 1.237 mm. Those values are lower than a predicted optimum values : 2 mm for both horizontal and vertical conveyers; 5 mm for robot pick-up equipment. Therefore, those results verify each equipment have safety and reliability.

NEARLY KAEHLERIAN PRODUCT MANIFOLDS OF TWO ALMOST CONTACT METRIC MANIFOLDS

  • Ki, U-Hang;Kim, In-Bae;Lee, Eui-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.61-66
    • /
    • 1984
  • It is well-known that the most interesting non-integrable almost Hermitian manifold are the nearly Kaehlerian manifolds ([2] and [3]), and that there exists a complex but not a Kaehlerian structure on Riemannian product manifolds of two normal contact manifolds [4]. The purpose of the present paper is to study nearly Kaehlerian product manifolds of two almost contact metric manifolds and investigate the geometrical structures of these manifolds. Unless otherwise stated, we shall always assume that manifolds and quantities are differentiable of class $C^{\infty}$. In Paragraph 1, we give brief discussions of almost contact metric manifolds and their Riemannian product manifolds. In paragraph 2, we investigate the perfect conditions for Riemannian product manifolds of two almost contact metric manifolds to be nearly Kaehlerian and the non-existence of a nearly Kaehlerian product manifold of contact metric manifolds. Paragraph 3 will be devoted to a proof of the following; A conformally flat compact nearly Kaehlerian product manifold of two almost contact metric manifolds is isomatric to a Riemannian product manifold of a complex projective space and a flat Kaehlerian manifold..

  • PDF