• Title/Summary/Keyword: Flat Surfaces

Search Result 347, Processing Time 0.023 seconds

Effect of different chlorhexidine application times on microtensile bond strength to dentin in Class I cavities

  • Kang, Hyun-Jung;Moon, Ho-Jin;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Objectives: This study evaluated the effect of 2% chlorhexidine digluconate (CHX) with different application times on microtensile bonds strength (MTBS) to dentin in class I cavities and intended to search for ideal application time for a simplified bonding protocol. Materials and Methods: Flat dentinal surfaces with class I cavities ($4mm{\times}4mm{\times}2mm$) in 40 molar teeth were bonded with etch-and-rinse adhesive system, Adper Single Bond 2 (3M ESPE) after: (1) etching only as a control group; (2) etching + CHX 5 sec + rinsing; (3) etching + CHX 15 sec + rinsing; (4) etching + CHX 30 sec + rinsing; and (5) etching + CHX 60 sec + rinsing. Resin composite was builtup with Z-250 (3M ESPE) using a bulk method and polymerized for 40 sec. For each condition, half of the specimens were immediately submitted to MTBS test and the rest of them were assigned to thermocycling of 10,000 cycles between $5^{\circ}C$ and $55^{\circ}C$ before testing. The data were analyzed using two-way ANOVA, at a significance level of 95%. Results: There was no significant difference in bond strength between CHX pretreated group and control group at the immediate testing period. After thermocycling, all groups showed reduced bond strength irrespective of the CHX use. However, groups treated with CHX maintained significantly higher MTBS than control group (p < 0.05). In addition, CHX application time did not have any significant influence on the bond strength among groups treated with CHX. Conclusion: Application of 2% CHX for a short time period (5 sec) after etching with 37% phosphoric acid may be sufficient to preserve dentin bond strength.

Room Acoustic Design in International Convention Center Jeju (제주국제컨벤션센터 컨퍼런스홀의 건축음향 설계)

  • 주현경;오양기;두세진;김하근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.802-807
    • /
    • 2003
  • International Convention Center Jeju(ICCJ) was planed and built for accommodating a variety of conventional and exhibitional activities. For a better flexibility of operation, almost all rooms in ICCJ are designed to be subdivided Into a couple of small rooms with installation of movable partition walls. Architectural and acoustical design should be deliberatively and cooperatively undertaken to cope with such a complex condition. Conference hall, the largest room in ICCJ, has a capacity of 5000 seats who:1 used as a whole. It could be divided into 3 halls, one with 2000 pre-installed seats on slanted floor, up/down removable stage and its settings above, and the other 2 flat rooms with no seats installed. A devided hall with pre-installed seats and stage is designed for a multi-use auditorium. Almost all surfaces except ceilings adjacent to the stage are sound absorptively treated, in regard to extensive use of sound reinforcement systems. Its reverberation time 1.65 sec without audience, which is roughly correspond to 1.50 sec with fully occupied audience. When there is a need for a larger room, all the partition wail Is removed and the hall could be used as a whole. Exhibition hall is located in the first floor of ICCJ. Absorption and softness are needed for the hat 1 because exhibition behavior has something noisy features. Perforated MDF panels with porous materials and air space in the back groundare adopted for the walls. There are one large, two medium, and several small convention rooms in ICJJ. The room are also acoustically designed for maximum flexibility with no defects soundwisely.

  • PDF

EFFECT OF CYCLIC STRAIN RATE AND SULFIDES ON ENVIRONMENTALLY ASSISTED CRACKING BEHAVIORS OF SA508 GR. 1A LOW ALLOY STEEL IN DEOXYGENATED WATER AT 310℃

  • Jang, Hun;Cho, Hyun-Chul;Jang, Chang-Heui;Kim, Tae-Soon;Moon, Chan-Kook
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • To understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$, the fatigue surface and a sectioned area of specimens were observed after low cycle fatigue tests. On the fatigue surface of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and a blunt crack tip were observed. Therefore, metal dissolution could be the main cracking mechanism of the material at this strain rate. On the other hand, on the fatigue surfaces of the specimens tested at strain rates of 0.04 and 0.4 %/s, brittle cracks and flat facets, which are evidences of the hydrogen induced cracking, were observed. In addition, a tendency of linkage between the main crack and the micro-cracks was observed on the sectioned area. Therefore, at higher strain rates, the main cracking mechanism could be hydrogen induced cracking. Additionally, evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. Thus, despite the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$.

Effect of Starting Powder on the Growth of BaTiO3 Film Prepared by Aerosol Deposition Process (에어로졸 데포지션 공정으로 제작된 BaTiO3 필름 성장에 출발 원료가 미치는 영향)

  • Cho, Myung-Yeon;Kim, Ik-Soo;Lee, Dong-Won;Koo, Sang-Mo;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.208-213
    • /
    • 2020
  • Four types of BaTiO3 powders are prepared and successfully deposited on glass and Pt/Si substrates using the aerosol deposition process. Particles with sizes of 0.45 ㎛ and 0.3 ㎛ are selected as the starting powder, while those powders are treated using a different milling method. The jet-milled and ball-milled powders not only showed a smaller particle-size distribution, but compared with the non-milled powder, it also had a higher deposition rate using the uniformly generated aerosol. Although the films deposited using particles with size 0.45 ㎛ exhibited some craters on the surface, significantly flat film surfaces were obtained. However, particles with size 0.3 ㎛ create a slightly rough film surface, but the dielectric constant was greater than in the case involving particles with size 0.45 ㎛. Consequently, a suitably large particle size significantly influences the deposition rate and improvement in the surface roughness, and a uniform particle size distribution appears to contribute to an improved dielectric constant. Therefore, it is believed that the dielectric properties along with the growth characteristics can be enhanced by limiting particle size and shape.

Development of wall climbing robot using vacuum adsorption with legged type movement (진공 흡착과 보행형 이동에 의한 벽면이동 로봇의 개발)

  • Park, Soo-Hyun;Seo, Kyeong-Jun;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.344-349
    • /
    • 2017
  • Wall-climbing robots have been developed for various purposes, such as cleaning skyscraper windows, maintaining large structures, and welding vessels. Conventional wall-climbing robots use movement systems based on wheels or legs. However, wheeled robots suffer from slipping effects, while legged systems require many actuators and control systems for the complex linkage structure, which also increases the weight of the robot. To overcome these disadvantages, we propose a new wall-climbing robot that walks based on gorilla locomotion. The proposed robot consists of a DC drive motor, a vacuum pump for adsorption, and a micro controller for controlling the system. The performance of the robot was experimentally verified on vertical and horizontal flat surfaces. The robot could be used for various functions in industrial sites or disaster areas.

THE EFFECT OF ADHESIVE PROPERTY ON MICROTENSILE BOND STRENGTH TO HUMAN DENTIN (상아질 접착제의 성상이 미세인장결합강도에 미치는 영향)

  • Kim, Hyoun-Jin;Hur, Bock;Kim, Hyun-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.281-287
    • /
    • 2004
  • The purposes of this study were to evaluate the effect of adhesive property on microtensile bond strength and to determine the failure mode. Flat occlusal dentin surfaces were prepared using low-speed diamond saw. The dentin was etched with 37% phosphoric acid. The following adhesives were applied to the etched dentin to manufacturer's directions: Scotchbond Multi-Purpose in group SM, Prime&Bond NT in group NT, Scotchbond Multi-Purpose followed by Tetric-flow in group TR. After adhesive application, a cylinder of resin-based composite was built up on the occlusal surface. Each tooth was sectioned vertically to obtain the $1{\;}{\times}{\;}1\textrm{mm}^2$ "sticks". Microtensile bond strength were determined. Each specimen was observed under stereomicroscope and scanning electron microscope (SEM) to examine the failure mode. Data were analyzed using one way ANOVA. The results of this study were as follows:1. The microtensile bond strength value were:group SM ($18.98{\pm}3.01MPa$). group NT ($16.01{\pm}4.82MPa$) and group TR ($17.56{\pm}3.22MPa$). No significant statistical differences were observed among the groups (P>0.05). 2. Most of specimens showed mixed failure. In group TR, there was a higher number of specimens showing areas of cohesive failure in resin.

A STUDY ON THE SHEAR BOND STRENGTH OF THE PORCELAIN LAMINATE ACCORDING TO SURFACE ROUGHNESS OF THE CUT ENAMEL (삭제된 법랑질의 표면거칠기에 따른 도재 라미네이트의 전단결합강도에 관한 연구)

  • Park, Bong-Seok;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.159-168
    • /
    • 1994
  • The purpose of this study was to evaluate the shear bond strength of the porcelain laminate specimens according to the surface roughness of the cut enamel of human anterior teeth. Flat enamel surfaces were prepared in 30 extracted human anterior teeth with diamond disc which were divided into two groups. Group 1 Coarse enamel surface group prepared with LVS-3 bur. Group 2 Fine enamel surface group prepared with superfine diamond bur. 30 teeth specimens of two group were stored in normal saline during 24 hours. 30 disk - type porcelain laminate specimens with diameter 4mm and thickness 1mm were made and sand - blasted on internal surface which were to cemented on enamel surface. Porcelain laminate specimens were cemented on enamel surface with Choice Veneer System (Bisco Dental, U.S.A) according to manufacture's instructions. All teeth specimens of two groups were manipulated with same method and stored In normal saline before testing. An Universal Testing machine (Model No.UTM-4206,Instron, U.S.A) was used to apply shear loads in the vertical directed, and the force required for separation was recorded with a cross head speed of 3mm/min and 500kg in full scale. The results were as follow ; 1. The mean shear bond strength of coarse surface group was 36.30kg and that of fine surface group was 44.39 kg, but there was no significant difference in breaking strength of two groups(p>0.05).

  • PDF

Effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin

  • Singh, Payal;Nagpal, Rajni;Singh, Udai Pratap
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.188-199
    • /
    • 2017
  • Objectives: This in vitro study evaluated the effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin. Materials and Methods: Flat coronal dentin surfaces were prepared in 120 extracted human molars. Teeth were randomly divided into 5 groups (n = 24) according to 5 different surface pre-treatments: No pre-treatment (control); 1M carbodiimide (EDC); 0.1% epigallocatechin-3-gallate (EGCG); 2% minocycline (MI); 10% sodium ascorbate (SA). After surface pre-treatment, adhesive (Adper Single Bond 2 [SB], 3M ESPE) was applied. Composite was applied into transparent plastic tubes (2.5 mm in diameter), which was placed over the bonded dentin surface. From each group, 10 samples were subjected to shear bond strength (SBS) evaluation at 24 hours (immediate) and remaining 10 samples were tested after 6 months (delayed). Additionally, 4 samples per group were subjected to scanning electron microscopic analysis for observation of resin-dentin interface. The data were statistically analysed with Shaperio-Wilk W test, 2-way analysis of variance (ANOVA), and post hoc Tukey's test. Results: At 24 hours, SBS of all surface pre-treatment groups were comparable with the control group, with significant differences found between EDC and SA groups only (p = 0.009). After 6 months storage, EDC, EGCG, and MI pre-treatments preserved the resindentin bond strength with no significant fall. Conclusions: Dentin pre-treatment with all the dentin biomodifiers except SA resulted in significant preservation of resin-dentin bond over 6 months storage period, without negatively affecting the immediate bond strength of the etch and rinse adhesive tested.

Micro/Nano Adhesion and Friction Properties of SAMs with Different Head and Functional Group according to the Coating Methods (코팅 방법에 따른 이종 SAMs의 관능기별 마이크로/나노 응착 및 마찰 특성)

  • Yoon Eui-Sung;Oh Hyun-Jin;Han Hung-Gu;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • Micro/nano adhesion and friction properties of self-assembled monolayers (SAMs) with different head- and end-group were experimentally studied according to the coating methods. Various kinds of SAM having different spacer chains (C10 and C18), head-group and end-group were deposited onto Si-wafer by dipping and chemical vapour deposition (CVD) methods under atmospheric pressure, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and also those under micro scale applied load were measured using a ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter respectively. Results showed that water contact angles of SAMs with the end-group of fluorine show higher relatively than those of hydrogen. SAMs with the end-group of fluorine show lower nano-adhesion but higher micro/nanofriction than those with hydrogen. Water contact angles of SAMs coated by CVD method show high values compared to those by dipping method. SAMs coated by CVD method show the increase of nano-adhesion but the decrease of nano-friction. Nano-adhesion and friction mechanism of SAMs with different end-group was proposed in a view of size of fluorocarbon molecule.

A Study on the Behavior of PHC-W Retaining Wall Method Based on the Numerical Analysis Results (수치해석 결과를 이용한 PHC-W흙막이공법의 거동에 관한 연구)

  • Choi, Jeong Pyo;Jin, Hong Min;Kim, Chea Min;Kim, Sung Su;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.5-15
    • /
    • 2017
  • PHC-W retaining wall method is one of the economical retaining wall methods. PHC-W pile used in PHC-W retaining wall method has special shape with flat surfaces so that the PHW-C retaining wall, with overlapped piles, shows outstanding vertical control and impermeability. In order to evaluate two types of retaining walls, numerical analysis were performed. The selection of cases depended on N values of the ground and ground properties, and two types of PHC-W retaining walls (defined as type A and B) were constructed. For a case that consists of inorganic clay and sand with less than 30 of N value, the maximum excavation depths for type A and B were respectively 10.5 m and 11.0 m. At the other case of which N value is above 30, the depths were 17.0 m and 19.5 m. From the results, it was found that maximum excavation depth, horizontal displacement, and safety factor for flexural strength of the wall were influenced by ground properties.