• Title/Summary/Keyword: Flat End-mill

Search Result 46, Processing Time 0.023 seconds

5-axis Machining of Impellers using Geometric Shape Information and a Vector Net (기하학적 형상정보와 벡터망을 이용한 임펠러의 5축가공)

  • Hwang, Jong-Dae;Yun, Il-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • Two rotational motions of the 5-axis machine tool maximize the degree of freedom of the tool axis vector, which improves tool accessibility; however, this lowers feed speed and rigidity, which impairs machining stability. In addition, cutting efficiency is lowered when compared with a flat end mill because typically, the ball-end mill is used when machining by rotational motion. This study increased cutting efficiency by using a corner radius flat end mill during impeller roughing. Furthermore, we proposed a fixed controlled machining of the rotary motion using geometric shape information to improve the feed speed and machining stability. Finally, we proposed a finishing tool path generation method using a vector net to increase the convenience and practicality of tool path generation. To verify its effectiveness, we compared the machining time, shape accuracy, and surface quality of the proposed method and an existing dedicated module.

Plane Surface Generation with a Flat End Mill (평 엔드밀을 이용한 평면가공에서의 가공면 형성기구)

  • Ryu, Si-Hyeong;Kim, Min-Tae;Choe, Deok-Gi;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF

Acoustic Emission and Burr Comparison of Circular Sawing and Milling in Fiber Reinforced Plastic Cutting (원형 톱과 엔드밀의 복합재료 절단 음향과 버 비교연구)

  • Joo, Chang-Min;Baek, Jong-Hyun;Kim, Su-Jin;Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.98-104
    • /
    • 2022
  • Circular sawing and milling are general machining processes used for routing fiber-reinforced plastics (FRP). In this study, the productivity and cutting quality of a circular saw and flat endmill were compared. As a result, the productivity of the circular saw was approximately ten times higher than that of the endmill for the same tool life, and the burr size of the circular saw was 14 times smaller than that of the flat-end mill. The spectrogram analysis of the cutting sound also showed that the acoustic emission of the circular saw was more uniform than that of the flat end mill. Circular sawing is thus a more suitable process for the straight cutting of pultrusion FRP than a flat endmill.

Evaluation of vibration property and machinability of spindle system in high speed machining center (고속 머시닝센터의 주축계 진동특성과 가공성 평가)

  • 김전하;강명창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.16-21
    • /
    • 2002
  • The high speed machining center(HMC) has been widely applied to manufacture a die and trial product in many machine industry. Because the evaluation fer the HMC is not sufficiently performed and the efficient cutting conditions aren't selected, a great loss has been caused in the cost aspect. In this study, the need of preliminary running time and unstable spindle speed is presented from the analysis of acceleration in idling. The Machinability fur the TiAlN coated flat end mill and STD11( $H_{R}$C60) is evaluated from the trends of tool wear and cutting force according to cutting conditions and slenderness ratio and a low response of tool dynamometer in high speed is proved. The resonance spindle speed is identified through the tool wear and natural frequency test.t.

  • PDF

Form Error Prediction in Side Wall Milling Considering Tool Deflection (측벽 엔드밀 가공에서 공구 변형을 고려한 형상 오차 예측)

  • 류시형;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.43-51
    • /
    • 2004
  • A method for form error prediction in side wall machining with a flat end mill is suggested. Form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.

A study on the surface roughness of STD 11 material according to the helix angle of ball endmill (볼 엔드밀의 헬릭스 각도에 따른 STD 11 소재의 표면 거칠기에 관한 연구)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • The ball end mill is a type of cutting tool that is widely used to process complex mold shapes including aspheric surfaces. Unlike the flat end mill in which the cutting edge is formed on the cylindrical handle, the cutting edge is formed from the cylindrical handle to the hemispherical shape, which is advantageous for processing curved shapes. However, since the cutting speed continuously changes during machining due to the helix angle of the cutting edge or the machining inclination angle, it is difficult to obtain a precise machined surface. Therefore, in this paper, machining was performed while changing the helix angle of the ball end mill and the angle of the machining slope under the same cutting conditions for STD 11 material, which is widely used as a mold material. Through this, the effect of the two variables on the roughness of the machined surface was analyzed. As a result, if the helix angle was 0 degrees, it showed the best surface roughness of Ra. 0.16 ㎛. When the helix angle was 20 degrees, the best surface roughness of Ra. 0.18 ㎛ was occurred.

  • PDF

Measurement of Tool Wear using Machine Vision in Flat End-mill (머신비젼을 이용한 평 엔드밀 공구의 마모측정)

  • Kim, Tae-Young;Kim, Eung-Nam;Kim, Min-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • End milling is available for machining the various shape of products and has been widely applied in many manufacturing industries. The quality of products depends on a machine tool performance and machining conditions. Recognition characteristics of the cutting condition is becoming a critical requirement for improving the utilization and flexibility of present-day CNC machine tools. The measurement of tool wear would be performed by coordinate-measuring machine(CMM). However, the usage of CMM requires much time and cost. In order to overcome the difficulties, on-line measurement(OLM) system was applied for a tool wear measurement. This study shows a reliable technique for the reduction of machining error components by developing a system using a CCD camera and machine vision to be able to precisely measure the size of tool wear in flat end milling for CNC machining. The CCD camera and machine vision attached to a CNC machine can determine tool wear quickly and easily.

Tool Deflection Estimation in Micro Flat End-milling Using Finite Element Method (유한요소법을 이용한 마이크로 평엔드밀링에서의 공구변형 예측)

  • Lim, Jeong-Su;Cho, Hee-Ju;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.498-503
    • /
    • 2010
  • The main purpose of this study strongly concerned micro machining error estimation by using FEM analysis of tool deflection shapes in micro flat end-milling process. For the precision micro flat end-milling process, analysis of micro cutting errors is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Especially, in micro end-milling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. Methods which deal with compensation of cutting error by tool deflection in macro end-milling process have been studied plentifully but, few researches transact with micro scaled cutting tool deflection in micro cutting process. Therefore, the trend of micro tool deflection was estimated by using FEM analysis in this paper. Cutting forces were acquired by micro dynamometer and these were utilized in FEM analysis. In order to verify FEM analysis results, micro machining processes were carried out and real machined profiles were compared with FEM results. Finally through the proposed approach well suited FEM results were obtained.

Development of Calibrating Instrument for Tool Wear using Spindle Orientation Function in End Milling (엔드밀 가공시 주축 오리엔테이션 기능을 통한 공구마멸 보정 장치의 개발)

  • Kim, Jeon-Ha;Kang, Myung-Chang;Kim, Jeong-Suk;Kim, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1095-1102
    • /
    • 2003
  • The most important thing in measuring the tool wear is to set up the measurement base. The end mill that is being used for machining of die is difficult to set up the base and to measure the tool wear because of geometric properties of that such as a helix and relief angle. In this study, a new instrument using spindle orientation function in end milling is developed to measure the tool wear and evaluated by the measuring system on the machine. Finally, this new method makes possible the wear measurement of same position and reduces the measuring time compared with the measuring methods such as the microscope and CCD.

CAD/CAM System development using the Database (데이터베이스를 활용한 CAD/CAM System개발에 관한 연구)

  • Myeong, Tae Sik;Kim, Tae Gyu;Kim, Ok Hyeon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.116-116
    • /
    • 1999
  • In this study we propose a novel approach with which design engineers can define and design free-from surface more easily. Free-from surface is defined as a parameterics shape which consists of a set of contr ol points. Parametric shape which not only has the advantage of allowing users to perform design changes efficiently, but also provides designers with a natural design environment in which they can do their work more naturally and creatively. The objective of this study is to develop a PC level freeform surface modelling system which explicitly represents information of part geometry. In this study, freeform surface modeling system consist of three modules : freeform surface modeler, input/output modules and interface with Database. In recent year there are increasing demands for the 5-axis machining of a complicated shape. This study is the development of a CAM software system (or NC module) for the 5-axis machining of a general shape with a flat-end mill, a round-end mill, a ball-end mill.