The Bank of Korea changed its method of GDP estimation from a fixed-weighted to a chain-weighted measure in 2009. The fixed-weighted method had had problems such as substitution bias and the rewriting of economic history. As a result of the change, annual growth rates calculated using the chain-weighted method from 1970 through 2008 turned out to be 0.8%p higher on average than the existing rates. The quarterly average chain-weighted growth rates were 0.19%p higher than the fixed-weighted ones, but they changed in the same directions. In this paper we analyze whether the differences in rates between the two calculation methods would bring about a difference in the cyclical characteristics of GDP. We conclude that although there were differences in growth rates after introduction of the chain-weighted method, there was no difference in the cyclical fluctuation.
한국은행은 2013년 생산자물가지수의 기준연도를 2005년에서 2010년으로 개편하고 기존 고정방식에서 연쇄방식으로 새로운 방식을 적용하였다. 전기공사비지수도 재료분야에서 생산자물가지수를 사용하고 있고, 과거 고정방식 적용으로 현실괴리, 스텝현상 등에 대한 문제점이 지속적으로 제기되어 왔기 때문에, 이에 대한 보완 및 개선방안으로 과거 고정방식에서 현재 연쇄방식으로 변경하였다. 그러나 이러한 편제방식 변경은 가중치 등을 변경시키는 바, 이에 대한 통계적 연속성의 검토가 필요하였다. 따라서 본 연구는 시계열 분석기법을 이용하여 고정방식과 연쇄방식 전기공사비지수의 시계열 특성, 통계특성의 동일성, 양 방식의 대체가능성의 통계연속성 검증을 실시하였다. 그 결과에 의하면, 기존 고정방식에서 현재 연쇄방식을 전기공사비지수에 적용하여도 통계적 연속성이 유지되는 것을 확인할 수 있었다. 따라서 실제 전기공사업 종사자, 전기공사비지수 활용자 등에게 연속적인 시계열 자료로서 인식될 수 있을 것으로 사료된다.
전기공사비지수는 실적공사단가의 합리적인 시간차 보정과 물가변동 등에 따른 계약단가조정을 위한 자료로 활용된다. 전기공사비지수는 전기공사업계 산업구조의 변화, 신기술공법의 변화, 새로운 상품등장 및 퇴장 등을 반영하여야 한다. 그러나 현행 고정방식 전기공사비지수는 이러한 변화를 즉각적으로 반영에는 가중치 및 기준연도 가격지수의 장기간 고정으로 인한 이론적으로 한계가 있다. 그리고 전기공사업 특성상 노임비중이 높아 특정 월을 중심으로 주기적으로 급격한 변동이 발생되는 문제점이 있었다. 이러한 문제점과 이론적 한계를 보완하는 대안으로 연쇄방식 전기공사비지수를 개발하여, 이를 건설공사비지수, 고정방식 전기공사비지수와 비교분석을 하였다. 그 결과에 의하면, 연쇄방식 전기공사비지수는 이론적 특성상 고정방식에 비하여 현실 상황을 잘 반영하며, 특히 전기공사지수의 활용취지 등에 부합하는 것을 알 수 있다. 따라서 연쇄방식 전기공사비지수는 고정방식에 비하여 상대적으로 우월하고는 말할 수 없지만, 최소한 고정방식의 문제점을 해결할 수 있는 하나의 대안으로 생각하여 볼 수 있다.
Lee, Cue Hyunkyu;Cook, Seungho;Lee, Ji Sung;Han, Buhm
Genomics & Informatics
/
제14권4호
/
pp.173-180
/
2016
The meta-analysis has become a widely used tool for many applications in bioinformatics, including genome-wide association studies. A commonly used approach for meta-analysis is the fixed effects model approach, for which there are two popular methods: the inverse variance-weighted average method and weighted sum of z-scores method. Although previous studies have shown that the two methods perform similarly, their characteristics and their relationship have not been thoroughly investigated. In this paper, we investigate the optimal characteristics of the two methods and show the connection between the two methods. We demonstrate that the each method is optimized for a unique goal, which gives us insight into the optimal weights for the weighted sum of z-scores method. We examine the connection between the two methods both analytically and empirically and show that their resulting statistics become equivalent under certain assumptions. Finally, we apply both methods to the Wellcome Trust Case Control Consortium data and demonstrate that the two methods can give distinct results in certain study designs.
This study proposes an inverse estimation method for the input forces of a fixed beam structural system. The estimator includes the fuzzy Kalman Filter (FKF) technology and the fuzzy weighted recursive least square method (FWRLSM). In the estimation method, the effective estimator are accelerated and weighted by the fuzzy accelerating and weighting factors proposed based on the fuzzy logic inference system. By directly synthesizing the robust filter technology with the estimator, this study presents an efficient robust forgetting zone, which is capable of providing a reasonable trade-off between the tracking capability and the flexibility against noises. The period input of the fixed beam structure system can be effectively estimated by using this method to promote the reliability of the dynamic performance analysis. The simulation results are compared by alternating between the constant and adaptive and fuzzy weighting factors. The results demonstrate that the application of the presented method to the fixed beam structure system is successful.
본 연구에서 이기종으로 구성된 웹 클러스터 시스템의 부하분산 알고리즘을 개발하고자 한다. 다수의 알고리즘을 제안하고, 동시 사용자수에 의거하여 응답시간을 측정하고자 한다. 동적 가중치에 의한 부하분산 알고리즘과 고정가중치에 의한 부하분산 알고리즘을 비교하고 동적 가중치 알고리즘이 우수함을 입증하고자 한다. 또한 클러스터 시스템의 효율은 사용자수가 증가함에 따라 향상됨을 보이고자 한다.
A graph is a data structure consisting of nodes and edges between these nodes. Graph embedding is to generate a low dimensional vector for a given graph that best represents the characteristics of the graph. Recently, there have been studies on graph embedding, especially using deep learning techniques. However, until now, most deep learning-based graph embedding techniques have focused on unweighted graphs. Therefore, in this paper, we propose a graph embedding technique for weighted graphs based on long short-term memory (LSTM) autoencoders. Given weighted graphs, we traverse each graph to extract node-weight sequences from the graph. Each node-weight sequence represents a path in the graph consisting of nodes and the weights between these nodes. We then train an LSTM autoencoder on the extracted node-weight sequences and encode each nodeweight sequence into a fixed-length vector using the trained LSTM autoencoder. Finally, for each graph, we collect the encoding vectors obtained from the graph and combine them to generate the final embedding vector for the graph. These embedding vectors can be used to classify weighted graphs or to search for similar weighted graphs. The experiments on synthetic and real datasets show that the proposed method is effective in measuring the similarity between weighted graphs.
본 논문은 기존 위치기반 서비스에서 최근접질의 및 한 지점에서의 방향성분을 고려한 최근접질의의 단점을 해소하고자 가중치 벡터합을 이용하는 새로운 검색방법을 제안한다. 검색반경으로 1차 필터링된 영역에서, 2차 필터링을 위해 이용자의 이동방향, 관심방향 및 검색각도를 조합한 방향정보를 이용한다. 이동방향은 일정구간내 존재하는 벡터들의 가중치 합으로 계산하며, 검색각도를 $0{\sim}360^{\circ}$까지 세분화하여 검색방향에 대한 범위를 조절 하도록 한다. 본 검색방법에 사용되는 데이터는 촬영위치가 기록된 정지영상 및 동영상, 업체나 관광지의 위치정보와 함께 소비자에게 제공되는 텍스트, 웹, 영상 등 각종 미디어 형태의 데이터가 될 수 있다. 제안하는 방법은 이동 중인 이용자가 현 위치를 기준으로 일정 반경 내에 있으면서 유사방향에 부합하는 미디어만을 검색하도록 함으로써, 이미 지났거나 혹은 관련 없는 방향의 미디어를 배제한 검색결과를 제공하기 때문에 기존의 위치만을 고려한 검색방법에 비해 보다 정확한 검색을 보장할 수 있으며, 방향성을 고려한 기존 최근접질의 에 비해서도 보다 유연하고 포괄적인 검색결과를 보장한다.
이진가중치 전하재분배 DAC는 커패시터를 기반으로 구동하고 커패시터 값에 따라서 데이터 변환을 시킨다. 전하재분배 DAC의 성능을 결정하는 가장 중요한 요소는 정확한 커패시터와 트랜지스터 소자들의 크기와 특성의 보장이다. 그러나 고해상도의 DAC에서는 회로의 레이아웃 설계시의 mismatch와 칩의 공정변화에 의해 다양한 기생소자 성분 발생과 소자특성의 변화를 피하기는 매우 어렵다. 이러한 소자 mismatch는 DAC 각 비트의 해당 아날로그 값에 비선형 오차를 발생시켜 SNDR 성능저하를 가져오게 된다. 본 논문에서는 커패시터 mismatch에 의한 DAC의 데이터 오차를 감지하고 이를 보상하는 방법을 제안한다. 제안된 방법은 2개의 동일한 DAC를 사용한다. 2개의 DAC는 고정된 차이를 가진 2개의 디지털 입력을 사용함으로써 각각 데이터가 변환된다. 비교기는 허용되는 차이 보다 큰 비선형 오차를 찾을 수 있다. 우리가 제안하는 보정 방법은 비교기가 오차를 제거 할 때 까지 DAC의 커패시터 사이즈를 바꾸면서 미세한 조정을 할 수 있다. 시뮬레이션은 12bit 이진가중치 전하재분배 디지털-아날로그 변환기의 커패시터 mismatch 보정과 비선형 오차를 효과적으로 감지하는 방법을 나타낸다.
Journal of the Korean Data and Information Science Society
/
제25권2호
/
pp.423-429
/
2014
본 논문은 이원고정효과모형의 분산분석에서 오차의 독립성과 등분산성이 만족되지 않는 경우를 가정하고 있다. 자료분석을 위한 모수추정방법으로 가중최소제곱법을 가정하고 있으며 모수를 추정하기 위한 방법으로 모형의 순차적 적합방식을 이용하고 있다. 또한, 모형의 행렬표현식으로부터 벡터공간에서의 사영을 이용하여 자료를 분석하는 방법을 제시하고 있다. 모형의 순차적 적합에 해당하는 제1종 제곱합을 구하기 위하여 모형행렬에 의한 부분공간으로의 사영을 다루고 있다. 이 경우에 사영에 의한 제곱합을 사영제곱합으로 취급한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.