References
- Evangelou E, Ioannidis JP. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 2013;14:379-389. https://doi.org/10.1038/nrg3472
- de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet 2008; 17:R122-R128. https://doi.org/10.1093/hmg/ddn288
- Zeggini E, Ioannidis JP. Meta-analysis in genome-wide association studies. Pharmacogenomics 2009;10:191-201. https://doi.org/10.2217/14622416.10.2.191
- Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 2010;86:6-22. https://doi.org/10.1016/j.ajhg.2009.11.017
- Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 2010;1:97-111. https://doi.org/10.1002/jrsm.12
- Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007;316:1336-1341. https://doi.org/10.1126/science.1142364
- Traylor M, Makela KM, Kilarski LL, Holliday EG, Devan WJ, Nalls MA, et al. A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach. PLoS Genet 2014;10:e1004469. https://doi.org/10.1371/journal.pgen.1004469
- Lee MN, Ye C, Villani AC, Raj T, Li W, Eisenhaure TM, et al. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 2014;343:1246980. https://doi.org/10.1126/science.1246980
- Raj T, Rothamel K, Mostafavi S, Ye C, Lee MN, Replogle JM, et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 2014;344: 519-523. https://doi.org/10.1126/science.1249547
- Zaitlen N, Eskin E. Imputation aware meta-analysis of genome-wide association studies. Genet Epidemiol 2010;34:537-542. https://doi.org/10.1002/gepi.20507
- Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008;40:638-645. https://doi.org/10.1038/ng.120
- Furlotte NA, Kang EY, Van Nas A, Farber CR, Lusis AJ, Eskin E. Increasing association mapping power and resolution in mouse genetic studies through the use of meta-analysis for structured populations. Genetics 2012;191:959-967. https://doi.org/10.1534/genetics.112.140277
- Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet 2014;46:989-993. https://doi.org/10.1038/ng.3043
- Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 2015;72:305-315. https://doi.org/10.1001/jamapsychiatry.2014.2206
- Sul JH, Han B, Ye C, Choi T, Eskin E. Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches. PLoS Genet 2013;9:e1003491. https://doi.org/10.1371/journal.pgen.1003491
- Fisher RA. Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd, 1925.
- Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 2011;88:586-598. https://doi.org/10.1016/j.ajhg.2011.04.014
- Fleiss JL. The statistical basis of meta-analysis. Stat Methods Med Res 1993;2:121-145. https://doi.org/10.1177/096228029300200202
- Liptak T. On the combination of independent events. Magyar Tud Akad Mat Kutato Int Kozl 1958;3:171-197.
- Zaykin DV. Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis. J Evol Biol 2011;24:1836-1841. https://doi.org/10.1111/j.1420-9101.2011.02297.x
- Zhou B, Shi J, Whittemore AS. Optimal methods for metaanalysis of genome-wide association studies. Genet Epidemiol 2011;35:581-591. https://doi.org/10.1002/gepi.20603
- Cochran WG. The combination of estimates from different experiments. Biometrics 1954;10:101-129. https://doi.org/10.2307/3001666
- Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959;22:719-748.
- Won S, Morris N, Lu Q, Elston RC. Choosing an optimal method to combine P-values. Stat Med 2009;28:1537-1553. https://doi.org/10.1002/sim.3569
-
Birch MW. The detection of partial association, I: the 2
$\times$ 2 case. J R Stat Soc Series B 1964;26:313-324. - Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP. Discovery properties of genome-wide association signals from cumulatively combined data sets. Am J Epidemiol 2009;170:1197-1206. https://doi.org/10.1093/aje/kwp262
- Greene WH. Econometric Analysis. Harlow: Pearson Education, 2011.
- Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661-678. https://doi.org/10.1038/nature05911
Cited by
- Comment on “Transcatheter aortic valve replacement in patients with pure native aortic valve regurgitation: A systematic review and meta‐analysis” vol.42, pp.1, 2019, https://doi.org/10.1002/clc.23127
- Preoperative Sagittal Spinal Profile of Adolescent Idiopathic Scoliosis Lenke Types and Non-Scoliotic Adolescents vol.44, pp.2, 2019, https://doi.org/10.1097/BRS.0000000000002748