• Title/Summary/Keyword: Fixed Runway

Search Result 12, Processing Time 0.016 seconds

Collision Avoidance Algorithms of Multiple AGV Running on the Fixed Runway Considering Running and Working Time (다중 AGV의 이동시간과 작업시간을 고려한 고정 경로에서 충돌 회피 알고리즘)

  • Ryu, Gang Soo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1327-1332
    • /
    • 2018
  • An AGV(Automated Guided Vehicle) where is running on production automated system is related efficiency of production system similarly. On previous study proposed a path collision avoidance algorithms using shortest path of AGV. Running time about loading and unloading with shortest path of AGV is important factor to decide the production system efficiency. In this paper, we propose a method of shortest path and shortest time. Also propose the decision making method of collision avoidance position for setup a shortest runway for next command. To do verify the proposed method consist a simulation for AGV. Finally, we compare and analyse the proposed system between the existing system and show that our system can effectively the performance.

Fixed and Moving Automatic FOD Detection Test using Radar and EO Camera (소형 Radar와 EO 카메라를 이용한 고정형 및 이동형 FOD 자동탐지 시험)

  • Kim, Young-Bin;Kim, Sung-Hee;Park, Myung-Kyu;Park, Kwang-Gun;Kim, Min-su;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.479-484
    • /
    • 2020
  • Foreign object debris (FOD) is a generic term for all substances that may pose a threat to aircraft operations on a runway. In the past, FOD detection and collection methods using human resources were very inefficient in terms of efficiency and economics, so it is essential to develop an unmanned FOD detection system suitable for domestic use. In this paper, the fixed FOD automatic detection system and mobile FOD automatic detection system using EO camera and radar were studied and developed at the Taean airfield of Hanseo University, and fixed and mobile method were operated to confirm that automatic FOD detection in the runway of the airfield is possible regardless of illumination and weather conditions.

Design optimization of a fixed wing aircraft

  • Yayli, Ugur C.;Kimet, Cihan;Duru, Anday;Cetir, Ozgur;Torun, Ugur;Aydogan, Ahmet C.;Padmanaban, Sanjeevikumar;Ertas, Ahmet H.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.65-80
    • /
    • 2017
  • Small aircrafts, Unmanned Aerial Vehicles (UAVs), are used especially for military purposes. Because landing fields are limited in rural and hilly places, take-off or landing distances are very important. In order to achieve a short landing or take-off distance many parameters have to be considered, for instance the design of aircrafts. Hence this paper represents a better design to enlarge the use of fixed wing aircrafts. The document is based on a live and simulated experiments. The various components of designed aircraft are enhanced to create short take-off distance, greater lift and airflow without the need for proper runway area. Therefore, created aerodynamics of the remotely piloted aircraft made it possible to use fixed wing aircrafts in rural areas.

Pre-simulation based Automatic Landing Approach by Waypoint Guidance for Fixed-Wing UAV (사전 시뮬레이션과 점항법 유도를 이용한 고정익 무인기의 자동 착륙 접근)

  • Lee, Jehoon;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.557-564
    • /
    • 2021
  • This paper describes an automatic landing approach algorithm for fixed-wing UAVs using waypoint guidance. The proposed algorithm utilizes simple 2D Dubin's vehicle pre-simulations in planning the waypoints for landing approach. The remaining time to reach the runway is also estimated in the pre-simulation, and it is used for altitude control. The performance of the designed algorithm was verified by simulations and flight tests.

A Study on the Military Runway Protection Performance for the Multiple Warheads Attack (다탄두 공격에 대한 군 활주로 방호성능 평가)

  • Hwang, Injae;Han, Jaeduk;You, Seunghan;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.521-526
    • /
    • 2020
  • Airfield pavements, such as runways and taxiways, are essential for smooth take-off and landing of fixed-wing aircraft and are the most important installation for the military to carry out air operations during wartime. Therefore, in wartime, it is necessary to reduce the damage to these installations and repair them in the shortest possible time. Recently, the pattern of attack is changing from the use of conventional high explosive which is to create large craters to the use of multiple warheads weapon system which is to effectively attack enemy's airfields but unrelated to accuracy. Hence in this study, through identifying the specification and composition of multiple warheads weapon system, we checked the protection performance and damage patterns of the pavement when explosion occurred on the installed military runway and taxiway by the multiple warheads weapon system. And The multiple warheads weapon systems is able to cause extensive damage but the destructive power of each warhead is not as great, so I would like to propose an airfield pavement design plan for minimal protection against such attacks.

An Analysis on the Degradation of Elevation Angle Accuracy Due to the Multi-Path Effect Using a Phased Array Antenna and the Beam Pattern Optimization to Minimize Its Degradation (위상배열 안테나를 활용한 다중 경로 효과에 의한 고각 정확도 열화 분석 및 열화 최소화를 위한 빔 패턴 최적화)

  • Kim, Young-Wan;Lee, JaeMin;Chae, Heeduck;Jin, Hyung-suk;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1036-1043
    • /
    • 2016
  • In this paper, an analysis about the elevation angle accuracy degradation of an APAR(Airport Precision Approach Radar) due to the multi-path effect using a phased array antenna was performed. An APAR installed around a runway of airport will be continuously affected in a runway surface of the fixed environment. In this paper, an analysis about the elevation angle accuracy degradation of APAR due to the multi-path effect of runway surface was conducted through a calculation of monopluse slope and sum/difference beam pattern analysis of array antenna. Also, a difference pattern for monopulse to minimize this degradation was optimized in an appropriate configuration to improve a elevation angle accuracy. Finally, a degree of improvement of elevation angle accuracy was confirmed by calculating a monopulse slope including the ground reflection after applying optimized difference patterns of array antenna.

A Study for Efficient Foreign Object Debris Detection on Runways (활주로 FOD 탐지 효율화를 위한 기술적 고찰)

  • Lee, Kwang-Byeng;Lee, Jonggil;Kim, Donghoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.130-135
    • /
    • 2014
  • FOD(Foreign Object Debris) has the potential threat to damage aircraft during critical phases of take-off and landing roll with some objects including metal on the runway. FOD can be found anywhere on an airport's air operation areas such as runway, taxiway and apron. It can lead to catastrophic loss of life and airframe, and increased maintenance and operating costs. In this paper, we defined FOD and surveyed its riskiness and necessity of automatic FOD detection system. We compared the requirements of the environment in Korea to the FAA advisory circular. Also we analyzed operation methods of FOD detection systems already installed at some airports. Based on the surveys mentioned above, we propose hybrid type of FOD detection system considering the environment in Korea which uses millimeter wave radar, optical camera and thermal imaging camera to detect FOD efficiently. In management approach, fixed type of the system should be installed for real-time monitoring, and mobile type of the system can be used additionally.

A Case Study on Application of Obstacle Limitation Criteria for Specific Conditions of Airports (특정 조건의 비행장에서 장애물제한규정 적용 사례연구)

  • Kim, DoHyun;Kim, Woong Yi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.25-30
    • /
    • 2016
  • Obstacle defines all fixed and mobile objects, or parts thereof, that are located on an area intended for the surface movement of aircraft or extend above a defined surface intended to protect aircraft in flight or stand outside those defined surfaces and that have been assessed as being a hazard to air navigation. The airspace around airports are maintained free from obstacles so as to permit the intended aeroplane operations at the airports to be conducted safely and to prevent the airports from becoming unusable by the growth of obstacles around the airports. This is achieved by establishing a series of obstacle limitation surfaces or airspace imaginary surfaces that define the limits to which objects may project into the airspace. This is a case study that shows an application of obstacle limitation criteria, which must be maintained free from an critical obstacle, for specific conditions of two airports. For the purpose of the application, aeronautical studies/flight safety influence assessments were used to identify possible solutions and select a solution that is acceptable without degrading aviation safety.

Guidance and Control System Design for Automatic Carrier Landing of a UAV (무인 항공기의 함상 자동 착륙을 위한 유도제어 시스템 설계)

  • Koo, Soyeon;Lee, Dongwoo;Kim, Kijoon;Ra, Chung-Gil;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1085-1091
    • /
    • 2014
  • This paper presents the guidance and control design for automatic carrier landing of a UAV (Unmanned Aerial Vehicle). Differently from automatic landing on a runway on the ground, the motion of a carrier deck is not fixed and affected by external factors such as ship movement and sea state. For this reason, robust guidance/control law is required for safe shipboard landing by taking the relative geometry between the UAV and the carrier deck into account. In this work, linear quadratic optimal controller and longitudinal/lateral trajectory tracking guidance algorithm are developed based on a linear UAV model. The feasibility of the proposed control scheme and guidance law for the carrier landing are verified via numerical simulations using X-Plane and Matlab/simulink.

Automatic FOD Detection Test Using EO/ IR Laser Light Camera (EO / IR Laser Light 카메라를 이용한 FOD 자동탐지 시험)

  • Shin, Hyun-Sung;Hong, Gyo-Young;Hong, Jae-Beom;Choi, Young-Soo;Kim, Yun-Seob
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.638-642
    • /
    • 2017
  • FOD is a generic term for substances with potential threats that can pose a fatal risk to aircraft. Therefore, FOD should be noted in all areas of the airport. Especially, the method of detecting and collecting FOD in runway and aircraft movements is very low efficiency and economical efficiency of airport operation, so it is essential to develop FOD automatic detection system suitable for domestic environment. As part of the aviation safety technology development project, the development of an automatic detection system for foreign matter in the moving area of the aircraft inside the airport is underway. In this paper, it is confirmed that EO / IR camera is used for detection of foreign objects at Taean Airfield of Hanseo University. EO camera is used during the day and IR camera is used at night.