• Title/Summary/Keyword: Fixed Density

Search Result 599, Processing Time 0.033 seconds

Sequential Sampling Plan for Aphis gossypii (Hemiptera: Aphididae) based on Its Intra-plant Distribution Patterns in Greenhouse Cucumber at Different Growth Stages (온실재배 오이의 생육단계별 목화진딧물의 주내 분포 특성에 기초한 축차표본조사법)

  • Chung, Bu-Keun;Song, Jeong-Heub;Lee, Heung-Su;Choi, Byeong-Ryul
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.401-407
    • /
    • 2015
  • This study describes the development of a method for monitoring Aphis gossypii in greenhouse cucumber fields that was used during 2013 and 2014. The dispersion pattern of A. gossypii was determined by commonly used methods: Taylor's power law (TPL) and Iwao's patchiness regression (IPR). The sample unit was determined by linear regression analysis between mean density of sample unit versus whole plant. The optimum sample unit for different plant growth stages was two leaves (median and the lowest + 1 leaf) when the total number of leaves was less than nine, and three leaves (4th, 7th from canopy, and the lowest +1 leaf) when the total number of leaves was greater than nine. A. gossypii showed an aggregated distribution pattern, as the slopes of both TPL and IPR lines were greater than 1. TPL provided a better description of the mean-variance relationship than did IPR. The slopes and intercepts of TPL and IPR from leaf samples did not differ between the surveyed years. Fixed precision levels (D) for a sequential sampling plan were developed using Green's and Kuno's equations based on the number of aphid in a leaf sample. Green's method was more efficient than Kuno's to stop sampling. The number of samples needed to estimate the density of A. gossypii increased at higher D levels and lower mean densities. The cumulative number of aphids needed to stop sampling increased at higher D levels and with fewer plants sampled. Thus to estimate 10 aphids per leaf, 13 plants needed to be sampled, and the cumulative number of aphids to stop sampling was 131.

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).

Optimization of Cultivational Conditions of Rice(Oryza sativa L.) by a Central Composite Design Applied to an Early Cultivar in Southern Region (중심합성계획법에 의한 남부 조생벼 재배요인의 최적조건 구명)

  • Shon, Gil-Man;Kim, Jeung-Kyo;Choe, Zhin-Ryong;Lee, Yu-Sik;Park, Joong-Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.1
    • /
    • pp.60-73
    • /
    • 1989
  • Two field experiments were carried out to assess the applicability of a central composite design (CCD) in determining optimum culture condition of an early rice cultivar, Unbongbyeo in southern Korea. A central composite design with two replicates was applied to five levels of five factors such as the number of hills per 3.3m2, the number of seedlings per hill, the levels of nitrogen, the transplanting date and the seedling age (Experiment 1). The levels of planting density were ranged from 30 hills to 150 hills per 3.3m2 ; the number of seedlings per hill from 1 seedling to 9 seedlings per hill; the levels of nitrogen application from 1 kg/l0a to 21 kg/l0a; the transplanting date from June 15 to July 5; the seedling age from 25 days to 45 days. A fractional factorial design was applied to three levels of five factors tested in CCD (Experiment 2). Yield per hill and per unit area were examined and the results obtained from both experiments were compared. The benefits from the central composite design were discussed. Maximum yield of brown rice per unit area was obtained at the combination of the central levels of one of five factors when the other four factors were fixed at central point. Furthermore, brown rice yield per unit area affected by interaction of two factors was maximized at the central point when the remain three factors being fixed at the central level. The responses of five factors to brown rice yield per hill and unit area were found to be a saddle point in both designs. Actual values of the stationary points were 107 hills per 3.3 m2, 4 seedlings per hill, 10 kg nitrogen per l0a, transplanting date of rice on June 26 and 33 days of seedling age in the central composite design. Brown rice yield per unit area at the stationary points were estimated 439 kg/l0a in the central composite design and 442 kg/l0a in the fractional factorial design. Considering the number of experimental treatment combinations, the central composite design was rather convenient in reducing the number of treatment combinations for similar information. It was more convenient for an experimenter to present the results from the central composite design than those from the fractional factorial design. Considering the optimum yields of brown rice per unit area at the stationary points being verified as saddle points in both designs. inter-heterogeneity of each of the factors should be avoided in setting up factors in pursuit of inducing unidirectional response of the factors to yield. Even though both the lower and higher levels in the central composite design being beyond the region of an experimenter's interest. they were considered highly valued in interpretation of the results. Conclusively. the central composite design was found to be more beneficial to optimize culture condition of paddy rice even with several levels of various factors were involved.

  • PDF

Studies on the Post-hatching Development of the Testis in Korean Native Chickens (한국 재래 닭 부화 후 고환 발달에 관한 연구)

  • Jang, B.G.;Tae, H.J.;Choi, C.H.;Park, Y.J.;Park, B.Y.;Park, S.Y.;Kang, H.S.;Kim, N.S.;Lee, Y.H.;Yang, H.H.;Ahn, D.C.;Kim, I.S.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.3
    • /
    • pp.171-179
    • /
    • 2006
  • Changes in the chicken testis from hatching to adulthood were studied in Korean native chickens of 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 24, 28, 32, 44, 52 and 64 weeks (n=13 chickens per group) of age. The present study was to investigate in more detail the post-hatching development of testis in Korean native chickens. Testes of chickens were fixed by whole body perfusion using a fixative containing 2.5% glutaraldehyde in cacodylate buffer, processed and embedded in Epon-araldite. Using $1{\mu}m$ sections stained with methylene blue-azure II, qualitative and quantitative(stereological) morphological studies were performed. Sperm production was measured by routine technique. The average volume of a testis of 1 week old Korean native chickens was determined as 0.015 g and the parameter increased linearly from 1 week to 21 weeks days (28.9 g), and did not change from 21 weeks to 64 weeks. The volume density of the seminiferous tubules increased with age from 32.6% at week 1 to 92.89% at week 64. The volume density of the interstitium represents 67.4% of the testicular parenchyma at week 1. This proportion progressively diminished during development to reach a value of 7.11% at week 64. Total sperm production per testis increased significantly from 18 weeks to 28 weeks and remained unchanged. Sperm production per 1 g testis increased significantly from 18 weeks to 28 weeks, did not change significantly from 28 weeks to 52 weeks, and declined significantly at 64 weeks of age. The average diameter of the seminiferous tubules gradually increased with age from 1 week $(42.4{\mu}m)$ to 21 weeks $(412.8{\mu}m)$. The length of the seminiferous tubules was 0.34 m at 1 week, increased significantly in subsequent age groups and reached 72.2 m by weeks 64. The stage of germ cell development in seminiferous tubules was classified as 1) spermatogonia $(1\sim8\;weeks)$, 2) spermatogonia and spermatocytes $(10\sim12\;weeks)$, 3) spermatogonia, spermatocytes and round spermatids $(14\sim16\;weeks)$, and 4) speramatogonia, spermatocytes, spermatids and spermatozoa $(18\sim64\;weeks)$. These results clarified the pattern of changes in the testicular development in Korean native chickens from hatching to adulthood as 1) neonatal-prepubertal $(1\sim12\;weeks)$, 2) puberty$(14\sim18\;weeks)$, and adult$(21\sim64\;weeks)$.

Synthesis of LSX Zeolite and Characterization for Nitrogen Adsorption (LSX 제올라이트의 합성 및 질소 흡착 특성)

  • Hong, Seung Tae;Lee, Jung-Woon;Hong, Hyung Phyo;Yoo, Seung-Joon;Lim, Jong Sung;Yoo, Ki-Pung;Park, Hyung Sang
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.160-165
    • /
    • 2007
  • The synthesis and the characterization of Low Silica X (LSX) zeolite for nitrogen adsorption have been studied. The performance of LSX zeolite for nitrogen adsorption was compared to that of the commercial zeolite. The $Na_2O/(Na_2O+K_2O)$ ratio in the gel and the crystallization time were fixed as the synthetic factor. The LSX zeolite was formed at the $Na_2O/(Na_2O+K_2O)$ ratio of 0.75. The formation of LSX zeolite was confirmed by XRD and SEM. The Si/Al ratio was investigated by using XRF and FT-IR. The synthesized LSX zeolite showed a lower Si/Al ratio than the NaY and NaX zeolites although they have a same faujasite structure. The Si/Al ratio of the LSX zeolite converged close to 1. 1A (Li, Na, K) and 2A (Mg, Ca, Ba) group elements were ion-exchanged to the LSX zeolite. As the charge density of cation rises, the amount of nitrogen adsorbed increased. $Li^+$ ion-exchanged LSX zeolite showed the highest nitrogen adsorption weight. When the Li/Al ratio was over 0.65, nitrogen adsorption increased remarkably. $Li^+$ ions located on the supercage (site III, III') in the LSX zeolite played a role as nitrogen adsorption sites. When the $Ca^{2+}$ ions were added to the LiLSX zeolite by ion-exchange method, the performance for nitrogen adsorption increased more. The performance for the nitrogen adsorption was the highest at the Ca/Al ratio of 0.26. Nitrogen adsorption capacity of LiCaLSX (Ca/Al=0.26) zeolite was superior to the commercial NaX zeolite.

Dose Evaluation at The Build Up Region Using by Wedge Filter (쐐기필터 사용에 따른 선량증가 영역에서 선량평가)

  • Kim, Yon-Lae;Moon, Seong-Kong;Suh, Tae-Suk;Chung, Jin-Beom;Kim, Jin-Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.341-348
    • /
    • 2014
  • Wedge filter could use to increase the dose distribution at the hot dose regions. We evaluated dose discrepancy at surface and build region in the infield and outfield that Metal Wedge (MW) and Enhance Dynamic Wedge (EDW) were interact with photon. In this paper, we used Gafchromic EBT3 film that had excellent spatial resolution, composed the water equivalent materials and changed the optical density without development. The set up conditions of linear accelerator were fixed 6 MV photon, 100 cm SSD, $10{\times}10cm^2$ field size and were irradiated 400 cGy at Dmax. The dose distribution and absorbed dose were evaluated when we compared the open field with $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ metal wedge and enhanced dynamic wedge. A $15^{\circ}$ metal wedge could increase the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. A $30^{\circ}$ metal wedge could decrease the surface and build up region dose than using a $30^{\circ}$ enhanced dynamic wedge. A $45^{\circ}$ metal wedge could decrease by large deviation the surface and build up region dose than using a $15^{\circ}$ enhanced dynamic wedge. The dose of penumbra region at outfield were increased on the thick side but were decreased on the thin side. It could be decrease the surface dose and build up region dose, if the metal wedge filters were properly used to make a good dose distribution and not closed the distance of surface.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

Studies on the Insect Pests of Barley in Korea (한국(韓國)의 보리해충(害虫)에 관(關)한 연구(硏究))

  • Kwon, Yong Jung;An, Seung Lak
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.129-150
    • /
    • 1985
  • The present investigation was conducted to provide a systematic approach necessary to establish an integrated insect pest management program of barley in Korea. Some ecological surveys on insect pests of barley have been undertaken at the field of Experimental Station, Ky$\check{o}$ngbuk Provincial Office of Rural Development as a fixed point survey area, and at 23 localities for round survey throughout southern and central Korea from 1983 to 1984. Previously known insects injurious to barley in Korea were revised and the population dynamics of 10 dominant harmful species were analyzed according to either 24 localities or 25 cultivars respectively by using several sampling methods of net sweeping, black light traps, yellow water pan traps and visual counting. As the results, a total of 94 species belonging to 77 genera under 32 families are known to be injurious to barley, among them 20 species are newly added here. In the population density level, the dominant species were disclosed as Laodelphax striatellus (43.1 %), Macrosiphum avenae(27.0 %), Rhopalosiphum padi(6.5 %), R. maidis(5.4 %), Psammolettix strialus(2.7 %), Chlorops oryzae(2.2 %), Agromyza albipennis(2.1 %) Phyllotreta nemorum(1.4 %), Chaetoenema cylindrica(1.0 %), Dolycoris baccarum(1.0 %) in order. For the general abundance of major insect pests, it was highest in the cultivar P'aldal whereas lowest in Milyang #22. There were tendencies that Psammotettix striatus, Dolycoris baccarum, Phyllotreta nemorum and Chaetocnema cylindrica represented a maximum increase in the beginning of June, while Chlorops oryzae and Agromyza albipennis showed in the middle of May but aphids were in the end of May. In the dominance of natural enemies, Nabis stenoferus occupied 21.4 % and Propylaea japonica 9.6 %.

  • PDF

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF