DOI QR코드

DOI QR Code

Sequential Sampling Plan for Aphis gossypii (Hemiptera: Aphididae) based on Its Intra-plant Distribution Patterns in Greenhouse Cucumber at Different Growth Stages

온실재배 오이의 생육단계별 목화진딧물의 주내 분포 특성에 기초한 축차표본조사법

  • Chung, Bu-Keun (Div. of Plant Environ., Gyeongsangnam-do Agric. Res. & Extn Serv.) ;
  • Song, Jeong-Heub (Div. of Sustainable Agric. Res., Jeju Special Self-governing Province Agric. Res. & Extn Serv.) ;
  • Lee, Heung-Su (Div. of Plant Environ., Gyeongsangnam-do Agric. Res. & Extn Serv.) ;
  • Choi, Byeong-Ryul (Crop Protection Div., National Academy of Agricultural Science)
  • 정부근 (경남농업기술원 친환경연구과) ;
  • 송정흡 (제주특별자치도농업기술원 친환경연구과) ;
  • 이흥수 (경남농업기술원 친환경연구과) ;
  • 최병렬 (국립농업과학원 작물보호과)
  • Received : 2015.08.12
  • Accepted : 2015.10.29
  • Published : 2015.12.01

Abstract

This study describes the development of a method for monitoring Aphis gossypii in greenhouse cucumber fields that was used during 2013 and 2014. The dispersion pattern of A. gossypii was determined by commonly used methods: Taylor's power law (TPL) and Iwao's patchiness regression (IPR). The sample unit was determined by linear regression analysis between mean density of sample unit versus whole plant. The optimum sample unit for different plant growth stages was two leaves (median and the lowest + 1 leaf) when the total number of leaves was less than nine, and three leaves (4th, 7th from canopy, and the lowest +1 leaf) when the total number of leaves was greater than nine. A. gossypii showed an aggregated distribution pattern, as the slopes of both TPL and IPR lines were greater than 1. TPL provided a better description of the mean-variance relationship than did IPR. The slopes and intercepts of TPL and IPR from leaf samples did not differ between the surveyed years. Fixed precision levels (D) for a sequential sampling plan were developed using Green's and Kuno's equations based on the number of aphid in a leaf sample. Green's method was more efficient than Kuno's to stop sampling. The number of samples needed to estimate the density of A. gossypii increased at higher D levels and lower mean densities. The cumulative number of aphids needed to stop sampling increased at higher D levels and with fewer plants sampled. Thus to estimate 10 aphids per leaf, 13 plants needed to be sampled, and the cumulative number of aphids to stop sampling was 131.

온실재배 오이에 발생하는 목화진딧물의 발생밀도를 추정하는 표본조사법을 개발하기 위하여 2개년(2013-2014년) 동안 주 전체의 잎별 발생밀도를 조사하였다. 목화진딧물의 공간분포 특성은 일반적으로 사용되는 Taylor's power law(TPL)와 Iwao's patchiness regression (IPR) 두 가지 방법을 이용하여 분포특성을 조사하였다. 목화진딧물의 주 전체 밀도를 대표할 수 있는 표본단위를 일정 잎 위치의 평균밀도와 주 전체의 잎당 평균밀도와의 일반선형 회귀식을 이용하여 결정하였다. 적정 표본단위는 오이 생육기에 따라 달랐는데, 총엽수가 9매 미만일 경우 2매(중위엽과 최하위+1번째 엽), 그 이상인 경우에는 3매(위로부터 4번째, 7번째, 최하위+1번째 엽)를 조사하는 것이 적합하였다. 오이에서 목화진딧물의 공간분포 특성은 TPL과 IPR의 기울기가 모두 "1"보다 커 집중분포를 하고 있었으며, 진딧물의 평균-분산 관계를 TPL이 IPR보다 더 잘 설명하였다. TPL의 기울기와 절편은 연차간에 차이가 없었으며, Green과 Kuno의 식을 이용하여 고정 정확도(D) 수준에서의 축차표본조사법을 개발하였다. 목화진딧물의 축차표본조사법은 Green의 방법이 Kuno에 비해 더 효율적이었다. 목화진딧물의 일정 평균밀도를 추정하기 위해 필요한 조사 주수는 D값과 잎당 평균밀도가 낮을수록 증가하는 경향이었다. 표본조사를 중지할 수 있는 누적 진딧물 수는 D값이 낮을수록, 조사 주수가 적을수록 증가하는 경향이었다. 목화진딧물 잎당 10마리의 밀도를 추정하기 위해 필요한 조사 주수는 13주이었으며, 이 때 조사를 중지하기 위한 누적 진딧물수는 131마리이었다.

Keywords

References

  1. Burgio, G., Ferrari, R., Antomiacci, R., 1994. Spatial distribution and binomial sampling of Aphid gossypii (Hemiptera: Aphididae) infesting protected cucumber and melon in northern Italy. Boll. Ist. Ent., G. Grandi Univ. Bologna 48, 229-237.
  2. Cho, K., Kang, S.H., Lee, J.O., 1998. Spatial distribution of thrips in greenhouse cucumber and development of a fixed-precision sampling plan for estimating population density. J. Asia-Pac. Entomol. 1, 163-170. https://doi.org/10.1016/S1226-8615(08)60017-5
  3. Chung, B.K., Son, K.A., 2001. Control system of whitefly, Trialeuodes vaporariourum in cucumber by the alternate application of insecticides within each conventional group. Korean J. Appl. Entomol. 40, 327-335.
  4. Gera, A., Loebenstein, G., Raccah, B., 1979. Protein coats of two strains of cucumber mosaic virus affect transmission by Aphis gossypii. Phytopathology 69, 396-399. https://doi.org/10.1094/Phyto-69-396
  5. Green, R.H., 1970. On fixed precision sequential sampling. Res. Popul Ecol. 12, 1-20. https://doi.org/10.1007/BF02511078
  6. Herron, G.A., Powis, K., Rophail, J., 2001. Insecticide resistance in Aphis gossypii Glover (Hemiptera: Aphididae) a serious threat to Australian cotton. Australian J. Entomol. 40, 85-91. https://doi.org/10.1046/j.1440-6055.2001.00200.x
  7. Hou, M., Lu, W., Wen, J., 2007. Within-plant distribution of Bemisia tacaci (Homoptera: Aleyrodidae) adults and immatures on greenhouse- grown winter cucumber plants. J. Econ. Entomol. 100, 160-1165.
  8. Hutchison, W.D., 1994. Sequential sampling to determine population density. 207-243, in: Pedigo, L.P., Buntin, G.D. (Eds), Handbook of sampling methods for arthropods in agriculture. CRC Press, Boca Raton, Florida. 714pp.
  9. Iwao, S., 1968. A new regression method for analyzing the aggregation pattern of animal population. Res. Popul. Ecol. 10, 1-20. https://doi.org/10.1007/BF02514729
  10. Jeon, H.Y., Kim, H.H., Yang, C.Y., 2006. Control threshold of the cotton caterpillar (Palpita indica S.) on cucumber in greenhouse. Korean J. Hort. Sci. Technol. 24, 465-470.
  11. Kang, T.J., Park, J.J., Cho, K., Lee, J.H., 2012. A bionomial sampling plans for Aphis gossypii (Hemiptera: Aphididae) in greenhouse cultivation of cucumbers. Korean J. Hort. Sci. Technol. 30, 596-602. https://doi.org/10.7235/hort.2012.12021
  12. Kuno, E., 1969. A new method of sequential sampling to obtain the population estimates with a fixed level of precision. Res. Popul. Ecol. 11, 127-136. https://doi.org/10.1007/BF02936264
  13. Kwon, M., Park, C.S., Hamh, Y.I., Lee, S.H., 2002. Yearly fluctuation of migrated aphids and PLRV transmission rate at Daegwallyeong highland region in Korea. Korean J. Appl. Entomol. 41, 247-253.
  14. Lee, G.H., Choi, M.Y., Lee, S.C., Park, H.M., 2000. Effects of temperature on the development and seasonal occurrences of Chrysopa pallens (Neuroptera: Chrysopidae). Korean J. Appl. Entomol. 39, 245-250.
  15. Lloyd, M., 1967. Mean crowding. J. Anim. Ecol. 36, 1-30. https://doi.org/10.2307/3012
  16. Park, J.J., Kim, J.K., Park, H., Cho, K., 2001. Development of time-efficient method for estimating aphids density using yellow sticky traps in cucumber greenhouses. J. Asia-Pac. Entomol. 4, 143-148. https://doi.org/10.1016/S1226-8615(08)60115-6
  17. Sokal, R.R., Rohlf, F.J., 1981. Biometry, 2nd ed., Chapman and Hall, London.
  18. Southwood, T.R.E., 1978. Ecological methods, 2nd ed., Chapman and Hall, London.
  19. SAS Institute, 1999. SAS $OnlineDoc^{(R)}$, Version 8, SAS Institute Inc., Cary, NC.
  20. Taylor, L.R., 1961. Aggregation, variation and the mean. Nature 189, 732-735. https://doi.org/10.1038/189732a0
  21. Taylor, L.R., 1971. Aggregation as a species characteristic, in: Patil, G.P., Pielou, E.C., Waters, W.E. (Eds), Statistical ecology. Penn. State Univ. Press, Philadelphia, pp. 357-377.
  22. Wang, K., Shipp, J.L., 2001. Sequential sampling plans for western flower thrips (Thysanoptera: Thripidae) on greenhouse cucumbers. J. Econ. Entomol. 94, 579-585. https://doi.org/10.1603/0022-0493-94.2.579