• 제목/요약/키워드: Fitting strength

검색결과 146건 처리시간 0.021초

154kV급 Hollow Composite Insulator의 기계적 강도해석 및 특성시험 (The Performance Test and Mechanical Strength Analysis for 154kV Hollow Composite Insulator)

  • 박기호;조한구;한동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.495-498
    • /
    • 2002
  • This paper describes the results the problem of stress calculation and optimization into a FRP(Fiber-glass Reinforced Plastic) tube crimped into a metal end-fitting. This type of assembly is used mainly is used mainly for suspension and line post insulators. Fitting strength of FRP and flange of this study is required greatly from composite insulator to important special quality. Therefore, wish to seek analysis and mechanical strength performance that follow to FRP tube and flange of top and bottom mechanical fitting.

  • PDF

Cone Pressuremeter를 이용한 점성토의 전단 강도 산정 (Determination of Undrained Shear Strength In Clay from Cone Pressuremeter Test)

  • 이장덕
    • 한국지반공학회논문집
    • /
    • 제20권8호
    • /
    • pp.49-58
    • /
    • 2004
  • 콘프레셔미터는 피에조콘 시험과 프레셔미터 시험을 동시에 수행할 수 있는 현장시험기로서 본 연구에서는 국내 점토지반에서 수행한 시험결과를 해석적으로 분석하였다. 콘프레셔미터 결과에 대한 이론적인 해는 흙이 비선형 거동을 하는 경우와 전단변형 중 체적변화가 발생하지 않는 경우에 대하여 해석적인 해가 존재한다. 이러한 해석적인 해로부터 콘프레셔미터의 결과중 하중 재하구간과 제하구간에 대해 Curve Fitting 방법을 사용한 콘프레셔미터 결과의 해석 방법을 제안하였다. 20개소의 현장에서 수행한 콘프레셔미터 결과 중 지반교란의 영향을 적게 받는 제하구간에 대하여 Curve Fitting 방법을 적용하여 점성토의 비배수 전단특성을 구하였다. 이렇게 구한 지반의 비배수 전단강도와 현장 Vane, 일축압축, 삼축압축 시험결과로부터 구한 지반의 비배수 전단강도를 서로 비교하여 콘프레셔미터 시험 결과로부터 Curve Fitting 방법을 통한 점성토 지반의 전단강도 특성파악의 적정성에 대해 평가하였다.

열박음 조건에 따른 전동기 회전축의 변형특성 (Strain Response of Motor Axis as Variation of Shrink Fitting)

  • 우병철;정연호;강도현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권9호
    • /
    • pp.532-537
    • /
    • 2004
  • Shrink fitting is often a conventional mechanical fasteners and fastening methods with temperature difference. Localized heating of the material surface provides temporary expansion and allows slip fit assembly. The resulting interference fit exhibits exceptional strength without surface deformation at ambient temperatures. We studied an analysing method to find out a deformation of motor axis as variation of constrained method with shrink fitting.

무기질계 영구거푸집의 부착능력평가를 위한 실험 적 연구 (The Experimental Evaluation of Inorganic Performanent′s Bonding Performance)

  • 김용성;강병훈;박선길;김병천;김우재;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1083-1088
    • /
    • 2001
  • To do performance evaluations about inorganic permanent form mixed in admixture(fly ash, silica fume) and after placed concrete, it is examined reinforcement materials in the permanent form from shear strength, bond strength and flexural strength tests. In this study, permanent form was inserted with reinforcement metal fitting is strength-tested in several method. The result of this study is belows. ⑴ In bond strength test, Most specimens are satisfied with criterion-6 kgf/$cm^{2}$ ⑵ Irrelative with the inserted metal fitting's shape, unevenness and aggregate, Permanent form and after placed concrete have good condition in the shear strength test. ⑶ In flexural test, there is no drop out of permanent form. Most cracks are located in nearby the strain point

  • PDF

무기질계 영구거푸집의 성능평가를 위한 실험적 연구 (The Experimental Study for Inorganic Permanent Form's Performance Evaluation)

  • 김용성;강병훈;김우재;정병훈;정재영;정상진;김광수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2001년도 학술논문발표회
    • /
    • pp.1-7
    • /
    • 2001
  • To do performance evaluations about inorganic permanent form mixed in admixture(fly ash, silica fume) and after placed concrete, it is examined reinforcement materials in the permanent form from shear strength, bond strength and flexural strength tests. In this study, permanent form was inserted with reinforcement metal fitting is strength-tested in several method. The result of this study is belows. (1) In bond strength test, Most specimens are satisfied with criterion-6 kgf/$cm^2$. (2) Irrelative with the inserted metal fitting's shape, unevenness and aggregate, Permanent form and after placed concrete have good condition in the shear strength test. (3) In flexural test, there is no drop out of permanent form. Most cracks are located in nearby the strain point.

  • PDF

크리프 균열 성장 실험을 위한 소성 변위 결정법 (Plastic Displacement Estimates in Creep Crack Growth Testing)

  • 허남수;윤기봉;김윤재
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1219-1226
    • /
    • 2006
  • The ASTM test standard recommends the use of the compact tension specimen for creep crack growth rates measurement. In the creep crack growth rate test, the displacement rate due to creep is obtained by subtracting the contribution of elastic and plastic components from the total load line displacement rate based on displacement partitioning method fur determining $C^*-integral$, which involves Ramberg-Osgood (R-O) fitting procedures. This paper investigates the effect of the R-O fitting procedures on plastic displacement rate estimates in creep crack growth testing, via detailed two-dimensional and three-dimensional finite element analyses of the standard compact tension specimen. Four different R-O fitting procedures are considered; (i) fitting the entire true stress-strain data up to the ultimate tensile strength, (ii) fitting the true stress-strain data from 0.1% strain to 0.8 of the true ultimate strain, (iii) fitting the true stress-strain data only up to 5% strain, and (iv) fitting the engineering stress-strain data. It is found that the last two procedures provide reasonably accurate plastic displacement rates and thus should be recommended in creep crack growth testing. Moreover, several advantages of fitting the engineering stress-strain data over fitting the true stress-strain data only up to 5% strain are discussed.

DEVELOPMENT OF AN OPTIMIZATION TECHNIQUE OF A WARM SHRINK FITTING PROCESS FOR AN AUTOMOTIVE TRANSMISSION PARTS

  • Kim, H.Y.;Kim, C.;Bae, W.B.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.847-852
    • /
    • 2006
  • A fitting process carried out in the automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that applies heat in the outer diameter of a gear to a suitable range under the tempering temperature and assembles the gear and the shaft made larger than the inner radius of the gear. Its stress depends on the yield strength of a gear. Press fitting is a method that generally squeezes gear toward that of a shaft at room temperature by a press. Another method heats warmly gear and safely squeezes it toward that of a shaft. A warm shrink fitting process for an automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by the process produced dimensional change in both outer diameter and profile of the gear so that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of a warm shrink fitting process in which design parameters such as contact pressure according to fitting interference between outer diameter of a shaft and inner diameter of a gear, fitting temperature, and profile tolerance of gear are involved. In this study, an closed form equation to predict the contact pressure and fitting load was proposed in order to develop an optimization technique of a warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained from theoretical and finite element analysis and also the expanded amounts of the outer diameters of the gears have a good agreement with the results.

온간압입공정에서 자동차 변속기 단품(축/기어) 치형 변화 예측에 관한 연구 (A Study on the Prediction of Teeth Deformation of the Automobile Transmission Part(Shaft/Gear) in Warm Shrink Fitting Process)

  • 김호윤;최창진;배원병;김철
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.54-60
    • /
    • 2006
  • Fitting process carried out in automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes of gear profile in both radial and circumferential directions. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop optimization technique of warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained by theoretical and finite element analysis and also the expanded amounts of the gear profile in both radial and circumferential directions are within the limit tolerances used in the field.

자동차 변속기 단품(축/기어)용 온간압입공정 최적화 기법 개발 (Development of Optimization Technique of Warm Shrink Fitting Process for Automobile Transmission Part(Shaft/Gear))

  • 김호윤;배원병;김철
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.37-43
    • /
    • 2006
  • Fitting process carried out in automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional change in both outer diameter and profile of the gear. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop optimization technique of warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained by theoretical and finite element analysis and also the expanded amounts of the outer diameters of the gears have a good agreement with results.

단품(축/OUTPUT 기어)조립을 위한 온간압입공정 해석 (Analysis of the Warm Shrink Fitting Process for Assembling the Part(Shaft and Output Gear))

  • 김태진;강희준;김철;주석재;김호윤
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.47-54
    • /
    • 2008
  • Fitting process carried out in the automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by a press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for the automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes in both the outer diameter and profile of the gear. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop an optimization technique of the warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field was in good agreements with the results obtained by the theoretical and finite element analysis.