• Title/Summary/Keyword: Fitting Model

Search Result 1,330, Processing Time 0.031 seconds

Implementation and Verification of PSpice Thermal Model for Power MOSFET (전력용 MOSFET의 PSpice 열적모델 구현 및 검증)

  • Lee, Gyeong-Hoon;Park, Soo-Whan;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.45-46
    • /
    • 2017
  • The operating characteristics of power MOSFETs greatly vary depending on the junction temperature. A PSpice thermal model is implemented to simulate the temperature characteristics of the power MOSFETs in this paper. A thermal model is derived that can be applied online in PSpice simulations and PSpice parameters are reconstructed using a curve fitting from commercial data sheets. The implemented PSpice model is applied to the buck converter and the validity of the model is verified through experiments.

  • PDF

A Study on a Basis for the Selection of a Design for Quadratic Model Fits Fearing a Cubic Bias in Multilple Response Case

  • Bae, Wha-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.31-44
    • /
    • 1995
  • In fitting a model, there always exists a discrepancy between the fitted model and the true functional relationship. In measuring this discrepancy, Box and Drapper (1959) used the criterion dividing the discrepancy into two parts which are the bias error part and the variance error one in single response case. In this paper, an optimum design which makes these two types of errors as small as possible is found by extending the Box and Drapper criterion to multiple response situation. Especially, a design is found to meat rotatability conditions when we fit a quadratic model to each response fearing cubic bias. Using the central composite design, an application of general results to a specific case is shown to help understanding the material.

  • PDF

Equivalent Circuit Model of Glucose Kinetics (생체내 포도당 동태의 등가회로모델)

  • Yun, Jang-H.;Kim, Min-Chong
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 1981
  • The objective of the present study was to develop an equivalent circuit model of glucose kinetics including the hepatic glucose balance functions which were neglected in the previous compartmental models. Using this circuit model, the insulin resistivity parameter and hepatic glucose sensitivity parameter were estimated in optimal fitting of the model based data of glucose and insulin concentration to the reported clinical intravenous glucose tolerance test(IVGTT) data in normal and diabetic subjects. The addition of the hepatic function in the model has improved the overall performance of the simulation. Also, the computed tissue insulin resistivity and the hepatic glucose sensitivity are shown to be significant in distinguishin four clinical groups of normal and diabetic groups.

  • PDF

A Study of HME Model in Time-Course Microarray Data

  • Myoung, Sung-Min;Kim, Dong-Geon;Jo, Jin-Nam
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.415-422
    • /
    • 2012
  • For statistical microarray data analysis, clustering analysis is a useful exploratory technique and offers the promise of simultaneously studying the variation of many genes. However, most of the proposed clustering methods are not rigorously solved for a time-course microarray data cluster and for a fitting time covariate; therefore, a statistical method is needed to form a cluster and represent a linear trend of each cluster for each gene. In this research, we developed a modified hierarchical mixture of an experts model to suggest clustering data and characterize each cluster using a linear mixed effect model. The feasibility of the proposed method is illustrated by an application to the human fibroblast data suggested by Iyer et al. (1999).

Complete 3D Surface Reconstruction from an Unstructured Point Cloud of Arbitrary Shape by Using a Bounding Voxel Model (경계 복셀 모델을 이용한 임의 형상의 비조직화된 점군으로부터의 3 차원 완전 형상 복원)

  • Li Rixie;Kim Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.906-915
    • /
    • 2006
  • This study concerns an advanced 3D surface reconstruction method that the vertices of surface model can be completely matched to the unstructured point cloud measured from arbitrary complex shapes. The concept of bounding voxel model is introduced to generate the mesh model well-representing the geometrical and topological characteristics of point cloud. In the reconstruction processes, the application of various methodologies such as shrink-wrapping, mesh simplification, local subdivision surface fitting, insertion of is isolated points, mesh optimization and so on, are required. Especially, the effectiveness, rapidity and reliability of the proposed surface reconstruction method are demonstrated by the simulation results for the geometrically and topologically complex shapes like dragon and human mouth.

Development of Three-Dimensional Contact Model of Human Knee Joint During Locomotion (보행 중 인체 슬관절의 3차원 접촉 모델 개발)

  • Kim, Hyo-Shin;Park, Seong-Jin;Mun, Joung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.182-189
    • /
    • 2005
  • The human knee joint is the intermediate joint of the lower limb that is the largest and most complex joint in the body. Understanding of joint-articulating surface motion is essential for the joint wear, stability, mobility, degeneration, determination of proper diagnosis and so on. However, many studies analyzed the passive motion of the lower limb because of the skin marker artefact and some studies described medial and lateral condyle of a femur as a simple sphere due to the complexity of geometry. Thus, in this paper, we constructed a three-dimensional geometric model of the human knee from the geometry of its anatomical structures using non-uniform B-spline surface fitting as a study for the kinematic analysis of more realistic human knee model. In addition, we developed and verified 6-DOF contact model of the human knee joint using $C^2$ continuous surface of the inferior region of a femur, considering the relative motion of shank to thigh during locomotion.

Bayesian Analysis of a New Skewed Multivariate Probit for Correlated Binary Response Data

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.4
    • /
    • pp.613-635
    • /
    • 2001
  • This paper proposes a skewed multivariate probit model for analyzing a correlated binary response data with covariates. The proposed model is formulated by introducing an asymmetric link based upon a skewed multivariate normal distribution. The model connected to the asymmetric multivariate link, allows for flexible modeling of the correlation structure among binary responses and straightforward interpretation of the parameters. However, complex likelihood function of the model prevents us from fitting and analyzing the model analytically. Simulation-based Bayesian inference methodologies are provided to overcome the problem. We examine the suggested methods through two data sets in order to demonstrate their performances.

  • PDF

Geometrical Compensation of Injection-Molded Thin-Walled Parts in Reverse Engineering

  • Kim Yeun Sul;Lee Hi Koan;Huang Jing Chung;Kong Young Sik;Yang Gyun Eui
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.12-18
    • /
    • 2005
  • A geometric compensation of thin-walled molded parts in reverse engineering is presented. Researches in reverse engineering have focused on the fitting of points to curves and surfaces. However, the reconstructed model is not the geometric model because the molded parts have some dimensional errors in measurements and deformation during molding. Geometric information can give an improved accuracy in reverse engineering. Thus, measurement data must be compensated with geometric information to reconstruct the mathematical model. The functional and geometric concepts of the part can be derived from geometric information. LSM (Least square method) is adopted to determine the geometric information. Also, an example of geometric compensation is given to improve the accuracy of geometric model and to inspect the reconstructed model.

An Optimization-based Computational Method for Surface Fitting to Update the Geometric Information of An Existing B-Rep CAD Model

  • Louhichi, Borhen;Aifaoui, Nizar;Hamdi, Mounir;BenAmara, Abdelmajid;Francois, Vincent
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • For several years, researchers have focused on improving the integration of the CAD, CAM and Analysis through a better communication between the various analysis tools. This tendency to integrate the CAD/Analysis and automation of the corresponding processes requires data sharing between the various tasks using an integrated product model. We are interested in this research orientation to CAD/CAM/Analysis integration by rebuilding the CAD model (BREP), starting from the Analysis results (deformed mesh). Because this problem is complex, it requires to be split into several complementary parts. This paper presents an original interoperability process between the CAD and CAE. This approach is based on a new technique of rebuilding the CAD surface model (Nurbs, Bezier, etc.) starting from triangulation (meshed surface) as a main step of the BREP solid model. In our work, the advantages of this approach are identified using a centrifugal pump example.

Bayesian analysis for the bivariate Poisson regression model: Applications to road safety countermeasures

  • Choe, Hyeong-Gu;Lim, Joon-Beom;Won, Yong-Ho;Lee, Soo-Beom;Kim, Seong-W.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.851-858
    • /
    • 2012
  • We consider a bivariate Poisson regression model to analyze discrete count data when two dependent variables are present. We estimate the regression coefficients as sociated with several safety countermeasures. We use Markov chain and Monte Carlo techniques to execute some computations. A simulation and real data analysis are performed to demonstrate model fitting performances of the proposed model.